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and the actual values of dcorr(A) for 13 invalid correlation matrices. . . 92

7.2 Timings of three routines for 13 invalid correlation matrices. . . . . . . 93

7.3 Efficiency of F01MDF and ncm upper relative to G02AA for the largest

invalid correlation matrices. . . . . . . . . . . . . . . . . . . . . . . . . 93

5



List of Figures

6.1 Measures of the error matrix F for 100 random matrices of order n =

100, with eigenvalues in [1, 104] and maximum eigenvalue fixed as 104. . 71

6.2 Measures of the error matrix F for 100 random matrices of order n = 10,

with eigenvalues in [1, 104], and maximum eigenvalue fixed as 104. . . . 72

6.3 The ratio ‖F‖2 /nu ‖A‖2 for 100 random matrices of order n = 10 with

eigenvalues in [1, 10k] and maximum eigenvalue fixed as 10k. . . . . . . 72

6.4 The ratio ‖F‖2 /nu ‖A‖2 for 20 random matrices of order n with eigen-

values in [1, 104] and maximum eigenvalue fixed as 104. . . . . . . . . . 73

6.5 The ratios r2 and rF plotted for 100 random matrices of order n with

eigenvalues in [−104,−1] and minimum eigenvalue fixed as −104. . . . . 74

6.6 The ratios r2 and rF plotted for 100 random matrices of order n with

eigenvalues in [−1, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.7 The ratios r2 and rF plotted for 100 random matrices of order n with

eigenvalues in [−104, 104]. . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.8 The ratios r2 and rF plotted for 100 random matrices of order n with

eigenvalues in [−1, 104] and at least one negative eigenvalue. . . . . . . 76

6.9 The ratios r2 and rF for 100 random matrices of order n = 100 and

eigenvalues in [−1, 104], for differing numbers of negative eigenvalues. . 77

6.10 Condition numbers κ2(A) and κ2(A+E) for random matrices of different

degrees of definiteness. Here, “negative definite” means eigenvalues

in the range [−104,−1], “indefinite” [−1, 1] and “slightly indefinite”

[−1, 104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.11 κ2(A) and κ2(A + E) for 100 random matrices of order n = 100 with

eigenvalues in [−1, 104] and κ2(A) fixed at 10k, for different values of k. 81

6



6.12 κ2(A) and κ2(A + E) for 100 random matrices of order n = 100, with

eigenvalues in the range [−1, 104], for two different values of delta. . . 81

6.13 Timings for F01MDF for 100 random matrices of order n with eigenvalues

in [−1, 104]. The time taken for a known expensive matrix of the same

order is included for comparison. . . . . . . . . . . . . . . . . . . . . . 84

6.14 Timings for F01MDF for 100 random matrices of order n with eigenvalues

in [−1, 1], with the time taken for a known expensive matrix of the same

order included for comparison. . . . . . . . . . . . . . . . . . . . . . . . 84

6.15 Timings for F01MDF for 100 random matrices of order n = 10 with

eigenvalues in [−1, 1]. This plot is the output of the only one of 14

iterations of the generating code for which the time taken for a random

matrix exceeded the known expensive matrix. . . . . . . . . . . . . . . 85

6.16 Timings for F01MDF for 30 random matrices (of order n = 1000 with

eigenvalues in [−1, 104]) and F07FD for 30 random positive definite

matrices of the same order. . . . . . . . . . . . . . . . . . . . . . . . . . 86

7



Abstract

The modified Cholesky decomposition is one of the standard tools in various areas of

mathematics for dealing with symmetric indefinite matrices that are required to be

positive definite. We survey the literature and determine which of the existing modified

Cholesky algorithms is most suitable for inclusion in the Numerical Algorithms Group

(NAG) software library, focussing in particular on the algorithms of Gill, Murray and

Wright, Schnabel and Eskow, Cheng and Higham, and Moré and Sorensen. In order to

make this determination we consider how best to take advantage of modern computer

architectures and existing numerical software. We create an efficient implementation

of the chosen algorithm and perform extensive numerical testing to ensure that it

works as intended. We then discuss various applications of the modified Cholesky

decomposition and show how the new implementation can be used for some of these.

In particular, significant attention is devoted to describing how the modified Cholesky

decomposition can be used to compute an upper bound on the distance to the nearest

correlation matrix.
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Chapter 1

Introduction

1.1 The Cholesky factorization

An n × n symmetric matrix A is called positive definite if xTAx > 0 for all nonzero

vectors x ∈ Rn [36, p. 196]. It is positive semidefinite if the inequality is not strict.

The concepts of negative definite and negative semidefinite are defined analogously.

We say the matrix is indefinite if none of the previous definitions hold.

The definiteness of a matrix is one of its most revealing attributes, with many

equivalent definitions and mathematical implications. For example, a matrix is positive

definite if, and only if, all of its eigenvalues are positive [36, p. 196]. It is positive

semidefinite if we also allow the possibility of some of its eigenvalues being exactly

zero. The sign of the eigenvalues of a negative definite or semidefinite matrix should

again be clear by analogy. A matrix is indefinite if it has both positive and negative

eigenvalues.

Positive definiteness confers many desirable properties upon a matrix, leading

Higham to remark in [36, p. 196] that “symmetric positive definiteness is one of the

highest accolades to which a matrix can aspire.” In particular, A is positive definite

if, and only if, it has a unique factorization of the form A = LLT , where L is a lower

triangular matrix with strictly positive diagonal entries. This is known as the Cholesky

decomposition (or factorization) and its discovery dates back to the early part of the

twentieth century [38]. A standard algorithm for computing it also dates to the same

period, and can be described as follows.1

1There are several minor variants of this algorithm; this is known as the jik or “sdot” form [36,

12



1.1. THE CHOLESKY FACTORIZATION 13

Algorithm 1.1: Computes the Cholesky factorization A = LLT of a symmetric
positive definite matrix A

Input : Symmetric positive definite matrix A
Output: Lower triangular matrix L with positive diagonal entries

1 for j = 1, . . . , n do

2 `jj =

(
ajj −

∑j−1
k=1 `

2
jk

)1/2

3 for i = j + 1, . . . , n do

4 `ij =

(
aij −

∑j−1
k=1 `ik`jk

)/
`jj

5 end

6 end

When applied to an n × n matrix, Algorithm 1.1 costs about n3/3 flops [38],

where a flop (short for floating point operation) is one of the fundamental arithmetical

operations +,−, /, or ∗. This can prove to be extremely efficient for many applications.

For example, when A is positive definite we can use a Cholesky factorization to solve

linear systems of equations Ax = b: we find the factorization A = LLT , then we solve

the systems Ly = b for y and LTx = y for x. The cost of solving the two triangular

systems is only O(n2) flops, so therefore the overall cost to highest order terms is just

the cost of the factorization, n3/3. When it is applicable, this can often be the most

efficient method for solving systems of linear equations and is therefore used widely

for that purpose [28, Chapter 4].

Cholesky factorization is considered to be amongst the most numerically stable

(see Appendix A) of all matrix factorizations [35, 75]. This stability follows from the

fact that the elements of L are bounded relative to those of A since

i∑
k=1

`2ik = aii =⇒ `ij ≤ aii.

With this it can be shown that if x̂ is the computed solution to the linear system

Ax = b found using the Cholesky factorization as described previously, then x̂ is in

fact the exact solution to the system (A+E)x̂ = b, where ‖E‖2 ≤ cnu ‖A‖2 [28, p. 147].

Here, cn is a small constant that depends on n, u is the unit roundoff (see Appendix

A) and ‖·‖2 is the matrix 2-norm (see Appendix B). Further, Wilkerson showed in

[75] that if κ2(A)dnu < 1, where dn is another constant depending on n and κ2(A) is

p. 197]. They all begin by equating A = LLT elementwise and then solving the resulting equations;
the order in which this is done determines the order of i, j and k.
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the 2-norm condition number of A (see Appendix B), then the Cholesky factorization

always runs to completion.

Other than solving positive definite systems of linear equations, the Cholesky fac-

torization is used in many other contexts. A simple extension of the previous example

would be solving the normal equations for any nonsingular system of linear equations.

More broadly, we can use the Cholesky factorization in almost any area in which pos-

itive definite matrices occur. To name just a few examples, the Cholesky factorization

is used in the Monte Carlo method [66], Kalman filtering [46] and many different areas

of optimization [16].

An alternative way to express the Cholesky factorization of A is A = RTR, where

R is upper triangular with positive diagonal entries; in this case, R is simply LT . Less

obviously, the Cholesky decomposition of a symmetric positive definite matrix A can

also be expressed as A = LDLT , where L is a unit lower triangular matrix and D is a

diagonal matrix with strictly positive diagonal entries. The two factorizations are in

fact equivalent: if we are given A = LDLT then we have A = (LD
1
2 )(LD

1
2 )T =: L̃L̃T .

Alternatively, if we are given A = L̃L̃T , then if we define a diagonal matrix D such

that d
1/2
ii = `ii for all i = 1, . . . , n, we can find a unit lower triangular matrix L such

that A = LDLT by solving the system L̃ = LD1/2.

Algorithm 1.2 describes one method of computing the LDLT variant of the Cholesky

factorization of a symmetric positive definite matrix A2. We can see that we do not

need to take any square roots in the algorithm. This eliminates one of the immediate

potential issues arising from Algorithm 1.1 that we have thus far avoided: what if the

expression we wish to find the square root of is negative? However, we still have a

problem if any of the djj are zero. In fact, it can be shown that one of the many

equivalent definitions of positive definiteness is that the expression we take the square

root of in Algorithm 1.1 is always strictly positive [36, p. 196]. Similarly, the djj in

Algorithm 1.2 are all positive if the matrix A is positive definite. Indeed, this is actu-

ally often the preferred way to check if a given matrix actually is positive definite: we

attempt a Cholesky factorization and if it fails, we know that it is not [36, p. 210]. This

once more emphasises the potential efficiency of the Cholesky factorization relative to

other methods.

2Again, there are minor variants.



1.2. THE MODIFIED CHOLESKY FACTORIZATION 15

Algorithm 1.2: Computes the Cholesky factorization A = LDLT of a symmetric
positive definite matrix A

Input : Symmetric positive definite matrix A
Output: Unit lower triangular matrix L, positive diagonal matrix D

1 for j = 1, . . . , n do

2 djj = ajj −
∑j−1

k=1 `
2
jkdkk

3 for i = j + 1, . . . , n do

4 `ij =

(
aij −

∑j−1
k=1 `ik`jkdkk

)/
djj

5 end

6 end

Although the LLT and LDLT factorizations are equivalent, there can be circum-

stances in which one is preferred to the other. For example, the method of solving

systems of linear equations using the LDLT variant is very similar to the LLT method

already described but is actually more efficient when solving tridiagonal systems of

equations [36, p. 197]. Computing square roots can also be expensive relative to more

fundamental mathematical operations in some computing environments. If it is ne-

cessary to use a machine for which this disparity is extreme, the LDLT variant of

the Cholesky factorization would again be preferred, especially if efficiency is of the

utmost importance.

A matrix H with complex entries is Hermitian if it is equal to its conjugate trans-

pose, the matrix H∗ formed by taking the transpose of H and then replacing all its

elements by their respective complex conjugates. We mention in passing that the

Cholesky factorization can be naturally extended to all complex Hermitian positive

definite matrices if we allow the factorization to include the conjugate transpose of the

triangular matrix rather than just its transpose [28, p. 147]. Many of the results in

this dissertation may be likewise extended; however, the reader should be aware that

others may not and we shall restrict ourselves entirely to matrices with real entries.

1.2 The modified Cholesky factorization

Due to the efficiency and stability of the Cholesky factorization, in practice situations

arise in which we wish to use one but the matrix in question is not positive definite; see

Chapters 7 and 8 for examples. If the matrix A is positive semidefinite, then we can
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always find a factorization of the form A = LDLT , but D may have zero elements on

the diagonal [35, 38] and the factorization is not unique [36, p. 201]. We can however

find a permutation matrix P such that PAP T has a unique factorization of the form

LDLT , with

D =

D1 0

0 0

 ,
where D1 is a square diagonal matrix with positive diagonal elements. The dimension

of D1 is r, where r is the rank of A, so this factorization is useful for its rank-revealing

property [36, p. 202]. This could be considered to be sufficient to say that we can

extend the Cholesky factorization to all positive semidefinite matrices as well, however

there are contexts in which this factorization is not considered adequate [74, 76]. In

any event, if the matrix A is neither positive definite nor semidefinite then we have no

such results and it is not clear how we should proceed.

Several modified Cholesky algorithms exist that aim to compensate for this lack of

positive definiteness. The basic idea is that we perturb A (i.e., add a matrix E to it)

to make it positive definite and then find a Cholesky factorization of this perturbed

matrix instead. The challenge is to do this in such a way that the perturbed matrix

remains pertinent to the original application.

In practice, we usually need to perform pivoting on the matrix being factorized to

ensure numerical stability, so we actually find the factorization

P (A+ E)P T = LDLT ,

where P is a permutation matrix instead. However, this does not alter the theory

in any appreciable way [12]. We discuss the particular pivoting strategies employed

by the existing modified Cholesky algorithms in turn as we discuss them in depth in

Chapters 2 and 3.

Clearly, for the perturbed matrix A+E to be of any practical use, the perturbation

made—and therefore the matrix E—must be in some mathematical sense “small”. The

natural way to define this is in terms of the norm of E: we desire that this is not much

larger than it needs to be in order to ensure that A + E is positive definite (and in

particular, if A is actually positive definite then we should like it to be zero). It is not

clear that any particular norm is naturally better suited for this than the others. We
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will most frequently use the norms described in Appendix B, as they are the norms

most commonly used throughout numerical linear algebra [28, p. 55].

Given a symmetric matrix A and a real number δ ≥ 0, a perturbation matrix whose

norm is the minimal distance from A to the set of symmetric matrices with minimum

eigenvalue δ can be readily computed for the 2- and Frobenius norms [12]. The most

obvious approach to finding E then would be to simply undertake this computation,

for the chosen norm, with δ as some acceptably small tolerance for the minimum

eigenvalue of A+E. The problem is that finding these minimal perturbations requires

computing the eigenvalues of A, which is an O(n3) operation that is more expensive

than the standard Cholesky factorization itself. As explained in the previous section,

one of the most common reasons for wishing to use a Cholesky factorization for a

matrix that is not positive definite is its efficiency relative to other methods and

we should therefore like to preserve this as far as possible. Hence we desire that

any prospective modified Cholesky algorithm is no more expensive than the standard

Cholesky algorithm, or at least not significantly more so.

While the modified Cholesky factorization of a matrix may be of mathematical

interest in itself, we shall see in later chapters that in practice we very often want to

actually use the perturbed matrix A + E in computations. Therefore, the condition

number of the matrix A + E is important here. We wish for it to be relatively small

and hence for the matrix itself to be well conditioned. At the very least, we do not

want the perturbed matrix to be so ill conditioned that it would adversely affect the

accuracy of further computations.

Schnabel and Eskow in [70] codified all the objectives we have mentioned into a

concise list, which is repeated with some minor revisions by Cheng and Higham in [12]

and Fang and O’Leary in [21]. We give the variant of Cheng and Higham here, for

reasons that we shall elaborate on forthwith.

1. If A is “sufficiently positive definite,” then E should be zero.

2. IfA is indefinite then ‖E‖ should be relatively small, i.e., ‖E‖ should not be much

larger than min{‖∆A‖ : A+ ∆A is positive semidefinite}, for some appropriate

norm.

3. The matrix A+ E should be reasonably well conditioned.
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4. The cost of the algorithm should not be prohibitive: it should be at most the same

as the standard Cholesky algorithm, to highest order terms ( i.e., n3/3 + O(n2)

flops).

We shall refer to these four objectives by number throughout this dissertation.

Precisely how we define “sufficiently” positive definite may depend on the algorithm

we are using and the problem to which we are applying it [21]. Naively, we would

simply say a matrix is positive definite if all of its eigenvalues are greater than zero

(and therefore, in practice, we would generally consider a matrix to be positive definite

if all of its eigenvalues exceed the unit roundoff). However, this is not necessarily the

most practical choice and we shall see in the following two chapters that the existing

modified Cholesky algorithms often use different metrics to determine if a matrix is to

be regarded as positive definite or not.

Schnabel and Eskow in [70] and [71] state the second objective as ‖E‖∞ being not

much greater than the magnitude of the most negative eigenvalue of A. For any given

matrix, this quantity is the distance to the nearest positive semidefinite matrix in the

2-norm [21] (and therefore also the ∞-norm for a diagonal matrix E). We shall see in

Chapter 2 that many of the existing modified Cholesky algorithms restrict themselves

to diagonal E; however, others do not (see Chapter 3) and therefore the more general

formulation is preferred here.

It is not immediately clear how we should quantify “reasonably” in the statement

of Objective 3, or even if we can. At the very least we would hope that we can somehow

bound the condition number of A + E relative to A. There are applications in which

we wish to preserve the condition number of the matrix as much as possible when

we perturb it, even if it is extremely ill conditioned [71]. Theoretical bounds on the

conditioning of the perturbed matrix are known for many of the existing algorithms

and will be discussed in the coming chapters.

The success of many of the current modified Cholesky algorithms in meeting these

objectives has been considered, both in theory and through numerical experimentation

[12, 21, 70, 71]. Several of them have also been applied to real-world problems [68, 77],

allowing us to analyse their practical performance.

In addition to the stated objectives, we obviously also wish that a modified Cholesky

algorithm adheres to the more general aims of any numerical algorithm, chief among
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them numerical stability.

With regards to practical implementation in particular, it is surely also wise to

consider how easily an algorithm can be adapted to modern computer architectures

and integrated into existing software libraries.

The reader should be aware that—confusingly—the LDLT variant of the standard

Cholesky factorization for positive definite matrices is occasionally referred to as the

modified Cholesky factorization in some sources; for example, [29, p. 295].

1.3 Structure and aims of this dissertation

This dissertation is sponsored by the Numerical Algorithms Group Ltd., who shall

generally be referred to by their preferred acronym of ‘NAG’ for the rest of this dis-

sertation. Their desire is for a survey of the extant modified Cholesky algorithms to

be conducted and that the most suitable one be implemented in the NAG software

library. Chapters 2 and 3 are the result of the aforementioned survey, which has been

undertaken by the author. The existing algorithms can be broadly divided into two

categories that approach the problem of an indefinite A from opposite directions. The

first is those that work by making a strictly diagonal perturbation to A in order to

make it positive definite. These are the focus of Chapter 2. The other category is those

that work by first finding another factorization of A and then perturbing the factors in

order to construct a positive definite matrix Ã = A + E that is (in some well-defined

sense) close to the original matrix. In Chapter 3, we discuss suitable factorizations

and the modified Cholesky algorithms that employ them.

In Chapter 4, we collate all of the existing theory and data in order to compare

the relative performance of many of the algorithms that have been discussed and

ultimately decide which one is most suitable for inclusion in the NAG Library. As the

NAG Library is a commercial product, intended to be run on a wide variety of machines

and used for many different purposes, it is important that the implementation of the

chosen algorithm be as robust and efficient as possible. Chapter 5 records the details

of how we implemented the algorithm with these additional objectives in mind and

Chapter 6 the results of the numerical testing that we performed to ensure that it

works as intended.



20 CHAPTER 1. INTRODUCTION

The inspiration for NAG’s decision to incorporate the modified Cholesky algorithm

into their library was a recent paper of Higham and Strabić in which the modified

Cholesky factorization is used to compute an upper bound on the distance from a

symmetric indefinite matrix to the nearest correlation matrix [40]. This term will

be defined in Chapter 7, where we discuss the problem in greater depth and show

how the new NAG modified Cholesky algorithm can be used to compute this distance

efficiently. Other applications of the modified Cholesky factorization are then briefly

described in Chapter 8. We conclude with some final remarks in Chapter 9.

1.4 Computing environment

All numerical experiments in this dissertation were performed on a machine with

two octa-core Intel Sandy Bridge processors (Xeon E5-2670 2.60 GHz; see here [44]

for more detailed specifications). We used Intel’s multithreaded Math Kernel Library

(MKL) [43] for optimized BLAS (see Appendix C); the number of cores used to achieve

individual results will always be stated explicitly before they are presented.

From Chapter 5 onwards we used a bespoke build of the NAG Library Toolbox [51]

for MATLAB R2016b incorporating the new F01MDF routine. Although the routine is

written in Fortran 90, we accessed MATLAB via a MEX interface, enabling us to take

advantage of its excellent built-in linear algebra and plotting functions. Note that the

Toolbox uses the alternative name F01MD for the routine but we will generally use the

former name as that is the name of the routine in the NAG Library kernel.

Data from numerical experiments performed by other sources may occasionally be

presented. These will be clearly identified and referenced as thoroughly as possible.



Chapter 2

Diagonal Perturbation Algorithms

The first numerically stable modified Cholesky algorithm was introduced by Gill and

Murray in the early 1970s [25] and refined by Gill, Murray and Wright in 1981 [27,

Chapter 4]. For the sake of brevity, we shall refer to this algorithm as the GMW

algorithm. Another modified Cholesky algorithm was proposed by Schnabel and Eskow

in 1990 [70] and revised by the same authors in 1999 [71]. We shall refer to this as the

SE algorithm, or SE90 and SE99 if it is necessary to distinguish between the two.

Motivated by practical problems involving indefinite Hessian matrices in optimiza-

tion (see Chapter 8), both the GMW and SE algorithms deal with an n×n symmetric

indefinite matrix A by essentially proceeding as an ordinary Cholesky factorization

but adding a sequence of numbers ej, j = 1, . . . , n to the diagonal of A such that

the djj calculated by Algorithm 1.2 (or the `jj calculated by Algorithm 1.1) are al-

ways strictly positive. Effectively, they find the Cholesky factorization of the positive

definite matrix A+ E, where E = diag(ej).

The key to both algorithms is choosing the numbers ej. The naive approach would

be to simply always choose the smallest ej ≥ 0 such that djj or `jj is positive. This

would certainly satisfy Objectives 1 and 4. However, in general Objective 2 is not

satisfied [21, 71] and there is no reason to believe it would be with this approach.

Precisely how the numbers are actually chosen is one of the key differences between

the two algorithms—although there are others—and will be described in the following

two sections.

21
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2.1 The Gill, Murray and Wright (GMW) algorithm

In order to describe the GMW algorithm it suffices to describe one iteration. Let

A ∈ Rn×n be a symmetric matrix. Define A1 = A. At the jth stage of the factorization,

the submatrix of A still to be factorized has the form

Aj =

αj bTj

bj Āj

 , (2.1)

where αj ∈ R, bj ∈ R(n−j) and Āj ∈ R(n−j)×(n−j). In practice we normally pivot on

the matrix Aj at this stage: we find the largest entry in magnitude along the main

diagonal and then interchange rows and columns so this entry is in the top left corner

(i.e., it is αj). Pivoting is not theoretically necessary for the algorithm to work but

empirical data suggests that it usually improves its performance [70].

Let δ ≥ 0 be an input tolerance. Then we determine the numbers ej for each

j = 1, . . . , n such that

αj + ej = max

{
δ, |αj|,

‖bj‖2∞
β2

}
, (2.2)

where β > 0 is a constant. Usually, the tolerance δ is set to the unit roundoff, u [27,

Chapter 4]. The |αj| term is included in an attempt to ensure that if αj < 0, then ej

is bounded below by −2αj [71].

Having found ej, we can now update the factorization according to

djj = αj + ej, `ij =
(bj)i
dii

, i = j + 1, . . . , n,

and calculate the next submatrix iterate Aj+1 by

Aj+1 = Āj −
bjb

T
j

αj + ej
. (2.3)

The constant β is included in an attempt to achieve Objectives 1 and 2 (i.e., ensuring

that E is zero when A is positive definite and ‖E‖ is small otherwise). To see how it

is chosen, let us define the following two quantities:

ζ = max
1≤i,j≤n
i 6=j

|aij|, the maximum off-diagonal entry of A,

γ = max
1≤i≤n

|aii|, the maximum diagonal entry of A.
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Then we can establish the bound [12, 21],

‖E‖2 ≤
(
ξ

β
+ (n− 1)β

)2

+ 2
(
γ + (n− 1)β2

)
+ δ. (2.4)

Again, note that because we only consider diagonal E, ‖E‖2 = ‖E‖1 = ‖E‖∞. So

from (2.2), the smallest possible bound we can have over all β > 0 is

‖E‖∞ ≤ 2ξ(
√
n2 − 1 + n− 1) + 2γ + δ, (2.5)

which is achieved when β2 = ξ√
n2−1 [27, Chapter 4]. However, choosing this value of

β can perturb positive definite A, so steps must be taken to ensure that we avoid this

in order to achieve Objective 1. Gill, Murray and Wright did this by showing that if

β2 ≥ γ, then E is zero. So if we calculate β using

β2 = max

{
γ,

ξ√
n2 − 1

, u

}
, (2.6)

then Objective 1 should be satisfied [27, Chapter 4]. Substituting the possible values

of β from (2.6) into the bound (2.4), we see that in any case, ‖E‖∞ ≤ K, where K is

a constant of O(n2).

The GMW algorithm very closely follows the standard Cholesky algorithm but

with the additional cost of finding each of the ej using (2.6). To highest order, the

cost of calculating β from (2.6) is just the cost of finding ζ, which requires at most

n2 comparisons. Similarly, the cost of computing each of the ‖bj‖∞ requires at most

n comparisons, and therefore finding all of them is also an O(n2) operation. Overall

then, to highest order terms, the cost of the GMW algorithm is the same as that of a

standard Cholesky algorithm (n3/3 flops) and Objective 4 is achieved.

Objective 3 is a little trickier. A bound that is exponential in n for the worst case

condition number of the matrix A+ E can be found [21],

κ2(A+ E) = O

(
n3
(ξ + γ

δ

)n)
.

This is of limited practical use, but it has been found in applications that κ2(A + E)

is generally much smaller than this [21, 70].

No explicit analysis of the GMW algorithm’s numerical stability was presented

in [27, Chapter 4]. However, Cheng and Higham in [12] make the following simple

argument demonstrating that it is in fact backward stable (and therefore numerically
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stable). Given a matrix A, use the GMW algorithm to compute the factorization

P (A + E)P T = LDLT . Since P (A + E)P T is positive definite, when we apply the

GMW algorithm to it, we get the same factorization P (A + E)P T = LDLT . This

is just a standard Cholesky factorization, which is backward stable. Therefore, the

GMW algorithm itself is also backward stable.

From its inception, the GMW algorithm gained widespread use, particularly in

unconstrained optimization problems, and is generally considered to have performed

very well [68, 70].

2.2 The Schnabel and Eskow (SE) algorithm

2.2.1 The SE90 algorithm

If γ > ξ√
n2−1 , then the upper bound on the norm of the perturbation matrix E com-

puted by the GMW algorithm is actually

‖E‖∞ ≤ (n2 + 1)γ + 2(n− 1)ξ +
ξ2

γ
+ δ, (2.7)

which is looser than the bound (2.4). Schnabel and Eskow argued that this was

likely to be the case in practice, and the desire to improve this bound motivated

the creation of their alternative modified Cholesky algorithm [70]. The algorithm

proceeds much as the GMW algorithm does—like a standard Cholesky factorization

with the additional step of finding the numbers ej—but instead uses a lemma based

on Gershgorin’s theorem to find the diagonal perturbations [70].

Theorem 2.1 (Gershgorin’s theorem) The eigenvalues of A ∈ Cn×n are contained

in the union of the discs Ci, which are defined for i = 1, . . . , n by

Ci =

{
z ∈ C : |z − aii| ≤

n∑
j=1
j 6=i

|aij|

}
.

We have given the more general formulation of the theorem for complex matrices,

although as ever here we only consider matrices with real entries. Further, since we

are concerned with symmetric A and the eigenvalues of a symmetric matrix are all
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real, the discs Ci are in fact intervals Ri of the real line defined by

Ri =

[
aii −

n∑
j=1
j 6=i

|aij|, aii +
n∑
j=1
j 6=i

|aij|

]
.

The most important implication of the theorem from our perspective is that if we

define the numbers ei, i = 1, . . . , n such that

ei ≥ −aii +
n∑
j=1
j 6=i

|aij|,

then A+E has no negative eigenvalues and so is at least positive semidefinite. [21, 70].

Note that for the moment, we will focus on making the perturbed matrix A + E

positive semidefinite rather than strictly positive definite. Steps are taken later in the

algorithm to ensure that the matrix A+ E is in fact strictly positive definite [70].

The next lemma follows from Theorem 2.1 [21].

Lemma 2.2 Suppose A ∈ Rn×n has the form

A =

α bT

b Ā

 ,
where α ∈ R, b ∈ Rn−1 and Ā ∈ R(n−1)×(n−1). Let δ ≥ max{0, ‖b‖1 − α} and define

Ã = Ā− bbT/(α + δ). Then Ci(Ã) ⊆ Ci+1(A) for i = 1, . . . , n− 1.

A proof is omitted here but one can be found in [70]. The relevance of Lemma 2.2

to a modified Cholesky algorithm is made clear by the next theorem.

Theorem 2.3 Suppose that at each iteration of the modified Cholesky factorization

as described in the previous section, the remaining submatrix Aj still to be factorized

is as in (2.1) and the next iterate Aj+1 is given by (2.3). Let ej = max{0, ‖bj‖1 − αj}

and E = diag(ej). Then A+ E is positive semidefinite and

‖E‖∞ ≤ γ + (n− 1)ξ, (2.8)

where ξ is the maximum (in magnitude) off-diagonal element of A and γ the corres-

ponding diagonal maximum of A. Furthermore, if any diagonal pivoting stategy is

employed at each iteration, then the bound (2.8) remains true.
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Again, a proof of this theorem is omitted but can be found in [70].

In actuality, the SE algorithm does not compute the ej as in Theorem 2.3. Instead

they are calculated from

ej = max{0, ‖bj‖1 − αj, ej−1}, (2.9)

This modification is to ensure that the ej are a nondecreasing sequence. The motiva-

tion for this is that if max{0, ‖bj‖1−αj} < ej−1 then using (2.9) does not change ‖E‖∞
at this stage of the factorization but could result in subsequent ej being smaller and

therefore may potentially reduce the value of ‖E‖∞ [70]. It should be noted however

that in some applications it has been found that this step is not always necessary and

may even impair performance [68].

The SE algorithm uses the following quantity to inform its pivoting strategy. At

the jth stage of the factorization, we can define for each row k of the submatrix Ãj

Gk = ãkk −
n∑
i=1
i 6=k

|ãik|, (2.10)

which is the lower bound of the Gershgorin interval Rk for that row. Rather than

selecting the diagonal element with the greatest absolute value as pivot, as in the

GMW algorithm, we choose the pivot to be the diagonal element from the row such

that Gk is maximized over all k = j + 1, . . . , n. The analysis justifying this choice of

pivoting strategy is elucidated in [70]. Usually finding all such pivots throughout the

entire factorization would incur a cost of O(n3) flops, however Schnabel and Eskow

were able to show that, through judicious use of Lemma 2.2, it is possible for this to

be done in just 2n2 flops [70].

The cost of finding the ej using (2.9) is about n2/2 flops, so the total additional

cost of the SE algorithm relative to the standard Cholesky algorithm is only about

5n2/2 flops, and therefore Objective 4 is achieved.

The other major difference between the SE and GMW algorithms specifies when a

matrix is to be considered to be positive definite and how the algorithm avoids perturb-

ing the matrix if that is the case. The algorithm is divided into two distinct phases:

in the first, a standard Cholesky factorization with GMW-like diagonal pivoting (i.e.,

choosing the largest element in magnitude as the pivot) is performed. However, as soon

as it is detected that the next iteration of the standard algorithm would lead to any
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one of the diagonal elements in the next submatrix becoming nonpositive (and there-

fore A not being positive definite), the second phase is initiated and the alternative

pivoting strategy described previously is applied until the factorization is complete.

In practice, the algorithm actually moves to the second phase when continuing the

first would lead to one or more of the diagonal elements in the next iterate submatrix

becoming smaller than a tolerance δ. Schnabel and Eskow suggest that this be chosen

as δ = τγ, where γ is (as defined previously) the largest diagonal element of A (in

magnitude) and τ is a constant for which they suggest a value of u1/3, where u is the

unit roundoff.

It is in the second phase that the algorithm makes sure that the perturbed matrix

A+E is strictly positive definite, rather than merely positive semidefinite. By actually

finding ej from

ej = max{0,−αj + max{‖bj‖1 , ej−1}}, (2.11)

rather than (2.9), the SE algorithm ensures that A + E is strictly positive definite,

although this does have the unwanted side effect of slightly increasing the bound (2.8)

on ‖E‖∞ to

‖E‖∞ ≤ γ + (n− 1)ξ + τγ. (2.12)

Empirically, Schnabel and Eskow found that by calculating the eigenvalues of the final

2 × 2 submatrix An−1 they could obtain smaller values of en−1 and en (and therefore

‖E‖∞) than using the previous strategy and therefore also incorporated this into the

algorithm [70]. However, in practice, particularly for large-scale problems, this may

not be worthwhile [68].

A consequence of setting the tolerance level to the suggested value of τγ is that

the SE algorithm will perturb a matrix if its condition number is greater than 1/τ ,

even if would otherwise qualify as positive definite.

For those matrices that are perturbed, the following bound on the condition number

of A+ E can be established [21],

κ2(A+ E) = O

(
n34n

(ξ + γ

δ

))
. (2.13)

As with the GMW algorithm, this is exponential in n and therefore would seem to be

of little interest (Schnabel and Eskow do not even explicitly state it in [70]), but—also
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as in the GMW algorithm—in practice it has been found that the condition number of

the perturbed matrix is generally much smaller than this. In numerical experiments,

Schnabel and Eskow believed they observed a de facto upper bound of about 1/τ [70]

and so suggested that Objective 3 is usually met.

With regards to Objective 1, Fang and O’Leary in [21] conclude that no perturb-

ation is made (i.e., E = 0) if

λmin(A) ≥ 1

2
n(n+ 1)δ.

Note that this means the conditions under which perturbations are actually made may

vary considerably from the GMW algorithm, particularly if n is large.

Schnabel and Eskow conclude their consideration of the success of their algorithm

in meeting Objective 2 with the following theorem.

Theorem 2.4 Suppose we apply the SE algorithm to a symmetric matrix A ∈ Rn×n,

and it stays in phase one for N ≥ 0 iterations. Let φ be the maximum magnitude of

the bounds Gk (defined as in (2.10)) of AN+1. If N = 0 (i.e., A is sufficiently positive

definite), then E = 0. Otherwise, E is a diagonal matrix with nonzero entries along

the diagonal, and

‖E‖∞ ≤ φ+
2τ

1− τ
(φ+ γ). (2.14)

Further, if N = 0, then

φ ≤ γ + (n− 1)ξ,

and if N > 0, then

φ ≤ (n−N + 1)(γ + ξ).

We can see that, no matter what the value of N , we have ‖E‖∞ = O(n) and the SE

algorithm achieves Schnabel and Eskow’s stated aim of improving upon the bound

(2.4) achieved by the GMW algorithm.

The same argument of Cheng and Higham used to show that the GMW algorithm is

numerically stable also applies to the SE algorithm [12]. Also like the GMW algorithm,

the SE algorithm has been widely used since its publication and is generally considered

to have been successful [71].

A block version (see Appendix D) of the SE algorithm was implemented by Daydé

in [14].



2.2. THE SCHNABEL AND ESKOW (SE) ALGORITHM 29

2.2.2 The SE99 algorithm

Although the SE algorithm has a tighter theoretical bound on ‖E‖ than the GMW

algorithm, it soon became apparent that sometimes the perturbation matrix E that

was produced was unacceptably large1. In particular, this often appeared to be the

case when the matrix A to be factorized was the sum of a large (in norm) positive

semidefinite matrix and another, smaller indefinite matrix. With the goal of correcting

this issue, the algorithm was revised by the original authors in [71].

The main change to the algorithm is determining exactly when we move into the

second phase of the two-phase strategy. Select µ ∈ (0, 1]2 and let

Aj =

αj bTj

bj Āj

 and Bj = Āj −
bjb

T
j

αj
,

where Aj is the submatrix still to be factorized at the jth stage of the algorithm, after

diagonal pivoting has been performed. Then we begin phase two unless both of the

inequalities

(Aj)ii ≥ −µαj and (Bj)ii ≥ −µγ

hold for all valid i, where γ is the greatest diagonal element of A, as before. The effect

of imposing both of these conditions is that the algorithm tends to remain in the first

phase for longer than the previous version [71].

Several other minor changes are made to the algorithm as a consequence of this

modification; for example, the constant τ is now replaced by another constant τ̃ with

a suggested value of u2/3, where u is the unit roundoff. An unfortunate result of these

changes is that the bound (2.14) is loosened slightly; the quantity φ must be replaced

by Φ, where Φ is defined by

Φ ≤ (n− (k + 1))((1 + µ)γ + ζ), for N > 0,

Φ ≤ γ + (n− 1)ζ, for N = 0,

and N is the number of steps that the algorithm completed in the first phase, as

before. However, this only increases the bound (2.14) by a factor of at most 1.1

[71], so Objective 2 is still achieved. The cost of the algorithm remains the same as

1In fact, an example was even remarked upon in Schnabel and Eskow’s paper introducing their
original algorithm.

2µ = 0.1 is suggested to be an empirically good value [71].
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before. The bound (2.13) also remains the same, although different behaviour has been

observed in practice: the new algorithm seems to often produce considerably larger

condition numbers for some matrices than the old one. Schnabel and Eskow note that

since these matrices are usually extremely ill conditioned in the first place, it may in

fact be advantageous for the perturbed matrices to retain this property [71].

After computational testing, Schnabel and Eskow ultimately concluded that they

were successful in resolving the motivating problem; we will consider this further in

Chapter 4.

2.3 Variants of the GMW and SE algorithms

Fang and O’Leary propose a variant of the SE algorithm and two variants of the GMW

algorithm in [21] and we will follow their naming conventions as we describe them here.

The GMW-I algorithm incorporates the two-phase strategy of the SE algorithms

into the GMW3. The first phase is identical to that of the SE99 algorithm, but once

the second is initiated, the algorithm proceeds as in the GMW. The advantage of

this compared to the original algorithm is that the bound on ‖E‖2 is now reduced

to O(n), as in the SE algorithms (although it is still larger than them, as noted in

[70]). The tolerance δ is suggested to be set as machine precision u and µ = 0.75

is stated to be an empirically good value for that constant, which is defined as in

section 2.2.2. Experimentally, Fang and O’Leary also found that by pivoting on the

maximum element rather than the maximum element in magnitude, they could reduce

the condition number of the perturbed matrix and therefore included this change into

the algorithm.

The other GMW variant proposed by Fang and O’Leary also takes inspiration

from the SE algorithms in order to reduce the bound on the ‖E‖ to O(n). The GMW-

II algorithm again incorporates the two-phase strategy and the modified diagonal

pivoting method as used in the GMW-I algorithm, but also attempts to ensure that

the diagonal perturbations ej, j = 1, . . . , n, are a nondecreasing sequence by choosing

them from

αj + ej = max

{
δ, αj + ej−1,

‖bj‖2∞
β2

}
, (2.15)

3This wasn’t a new idea and had actually been considered by Schnabel and Eskow in [70].
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rather than (2.2), where αj, bj and β are all as defined in section 2.1. It is suggested

to take the same value for the tolerance δ as in the SE99 algorithm, δ = u2/3η.

Fang and O’Leary call their modified SE algorithm the SE-I algorithm. Three

major changes are made to the SE99 algorithm as described in section 2.2.2. We shall

only describe one in detail here; a full description of the other changes can be found

in [21]. Let N be as in section 2.2, the number of steps the algorithm takes in the first

stage. Then instead of (2.11), we find ej from

ej = max{0,−2αj,−αj + max{‖bj‖1 , τ̃ η}}, (2.16)

for j = N + 1, . . . , n− 2, where τ̃ is as defined in section 2.2.2. The other changes to

the algorithm concern how the final 2 × 2 submatrix is dealt with and what to do if

the algorithm moves into the second phase in the last iteration. The effect of these

changes is to roughly half the upper bound (2.14) on the norm of E established for

the SE99 algorithm.

Fang and O’Leary performed extensive numerical experimentation with all three of

their variant algorithms to determine how well they achieve the four primary objectives

of a modified Cholesky algorithm and we discuss the results of this in Chapter 4.

2.4 Others

Wright proposes an algorithm that he refers to as a modified Cholesky algorithm in

[76]. Despite the name, the algorithm is intended only for symmetric positive definite

matrices that arise in the context of interior-point algorithms in linear programming

but which are so ill conditioned that the standard Cholesky factorization can encounter

problems during pivoting, so is of little interest to us since we are concerned with

potentially indefinite matrices. It may be possible to extend the idea to indefinite

matrices but it is not immediately clear how that would be done.

An algorithm for finding what they call the Unconventional Modified Cholesky

(UMC) factorization is introduced by Schlick and Xie in [77]. The context is a

truncated-Newton method (see Chapter 8) for large-scale optimization problems in

chemical applications; sometimes, preconditioners (see section 8.2) derived from the

problem are not positive definite when they (ideally) should be. The authors had
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experience using the GMW and SE90 algorithms, as well as the modified Cholesky

algorithm of Cheng and Higham (see section 3.1.2), but found that all three were

capable of modifying the indefinite matrix by too large an amount with resultant un-

acceptable computational costs. Their method is designed to minimize these costs as

much as possible. However, as with the method of Wright, there is a critical issue: it

is possible for the perturbed matrix to be indefinite. This proves to be acceptable for

their purposes, but clearly not for ours.

The UMC algorithm does have a good record of performance: it is used in TN-

PACK, a Fortran package for unconstrained optimization problems, with a particu-

lar emphasis on those arising from molecular applications in chemistry [67, 69], and

TNPACK itself was included in the more widely used molecular simulation program

CHARMM4 [11, 78]. Therefore, it may be worthwhile for it to be investigated whether

it is possible to alter the algorithm for more general use as a modified Cholesky fac-

torization method.

4Chemistry at HARvard Macromolecular Mechanics.



Chapter 3

Indefinite Factorization Algorithms

It has already been mentioned that the LDLT factorization of an n × n symmetric

indefinite matrix A may not exist. Perhaps the simplest example of this is the 2 × 2

matrix [ 0 1
1 0 ]. However, if we allow D to be block diagonal, with blocks of order 1

or 2, then a factorization of the form PAP T = LDLT , where P is a permutation

matrix, can always be found [6, 12]. This is one of the most useful factorizations of a

symmetric indefinite matrix [36, p. 214] and has long been implemented in LINPACK

[17], LAPACK [2] and (more recently) as a built-in function in MATLAB [31].

The basic idea behind the algorithms discussed in the first section of this chapter is

to compute the symmetric indefinite factorization PAP T = LDLT , perturb D to make

it positive definite and then use this perturbed D to construct a positive definite matrix

near the original matrix A1. This approach appears to have first been proposed, at least

in a rigorous way, by Moré and Sorensen in the late 1970s [47]. However, because of

the limitations of the pivoting strategies available at the time to compute the indefinite

LDLT factorization, it was uncertain that their algorithm satisfied Objectives 1–42.

Cheng and Higham’s 1998 modified Cholesky algorithm attempts to remedy this by

utilising a pivoting strategy discovered in the interim, so-called “rook” pivoting [6, 12].

Throughout this chapter (and beyond), we will refer to the algorithm of Cheng and

Higham as the CH algorithm and that of Moré and Sorensen as the MS algorithm.

We shall focus exclusively on these two examples of their class of modified Cholesky

1Cheng and Higham do note in [12] that because D is block diagonal, this is not technically a
Cholesky factorization. However, since all the diagonal blocks of D are positive definite, they conclude
that it can be justly viewed as one.

2In fact, their algorithm predates any explicit formulation of the objectives and was created for a
different purpose, but the analysis is the same.

33
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algorithms as they are by far the most prominent [21].

Another useful symmetric matrix factorization is the tridiagonal factorization LTLT ,

where T is a tridiagonal matrix. Although not nearly as common in the modified

Cholesky literature as the LDLT factorization, Fang and O’Leary in [21] propose vari-

ants of both the CH and MS algorithms that incorporate it. We shall briefly consider

this factorization and its application to the modified Cholesky factorization in the final

section of this chapter.

3.1 Block diagonal LDLT factorization

The process of computing an LDLT factorization of a nonzero symmetric matrix,

where D is block diagonal, is described succinctly by Higham in [36, pp. 214–215], and

we follow his exposition closely here. Let A ∈ Rn×n be a symmetric matrix. Then we

can find a permutation matrix P1 and an integer s = 1 or 2 such that

P1AP
T
1 =


s n−s

s E CT

n−s C B

,
where E is nonsingular. With this P1, we then compute the factorization

P1AP
T
1 =

 Is 0

CE−1 In−s

E 0

0 B − CE−1CT

Is E−1CT

0 In−s

 .
This process is then repeated recursively on the (n − s) × (n − s) submatrix Ã =

B − CE−1CT (called the Schur complement). We continue for k steps until we arrive

at the factorization PAP T = LDLT , where P = P1P2 . . . Pk.

The cost of the factorization is the same as that of the standard Cholesky factor-

ization, n3/3 flops. However, we also need to account for the pivoting strategy we

employ in order to find the permutation matrices Pi.

3.1.1 Pivoting strategies

There were two obvious pivoting strategies available to Moré and Sorensen: Bunch-

Parlett (“complete”) [10] and Bunch-Kaufman(“partial”) [9] pivoting. Both strategies

are numerically stable and were widely used, with the Bunch-Kaufman strategy in
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particular being used for the LDLT factorization in both LINPACK and LAPACK

since soon after its inception [6]. However, both were problematic in the context of

a modified Cholesky algorithm. In order to determine the pivot at each stage of the

factorization, the Bunch-Parlett strategy requires searching the entire remaining sub-

matrix Ã, which can cost up to n3/6 total comparisons for an n×n matrix, and there-

fore any modified Cholesky algorithm incorporating it would fail to achieve Objective

4. Alternatively, the Bunch-Kaufman pivoting strategy only searches one column at a

time, thus requiring at most O(n2) comparisons and satisfying Objective 4 even in the

worst possible case. However, although the algorithm is actually numerically stable,

the elements of L are not bounded relative to those of A. The problem with this in the

context of a modified Cholesky algorithm is best illustrated by the following example,

cited both by Higham in [36, p. 219] and Fang and O’Leary in [21].

Let ε > 0. Then the symmetric matrix

A =


0 ε 0

ε 0 1

0 1 1

 ,
has the LDLT factorization

A =


1

0 1

1/ε 0 1




0 ε

ε 0

1




1 0 1/ε

1 0

1

 ,
when we use the Bunch-Kaufman pivoting strategy. We can see that the elements of L

are not bounded as ε→∞. This causes problems, in particular, because the elements

of the perturbation matrix E that we obtain from either of the two modified Cholesky

algorithms that we describe in the following section are also unbounded (and therefore

so is its norm).

Two alternative pivoting strategies were proposed by Ashcraft, Grimes and Lewis

in [6]. One is a variant of Bunch-Kaufman and the other a variant of Bunch-Parlett.

Both are numerically stable [6]. The bounded Bunch-Kaufman or “rook”3 pivoting

strategy is described as follows. At the first stage of the LDLT factorization, the

3The origin of the name should hopefully be clear to those familiar with the game of chess once
we come to describe the strategy.
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pivot—either 1 × 1 or 2 × 2—is chosen according to the following algorithm [12] and

the others are later chosen likewise.

Algorithm 3.1: Selects the pivot for the first stage of the symmetric indefinite
LDLT factorization of a symmetric matrix A ∈ Rn×n according to the rook
pivoting strategy of Ashcraft, Grimes and Lewis

1 Let α = (1 +
√

17)/8 (≈ 0.64)
2 Let ω1 be the maximum magnitude of any subdiagonal element in column 1
3 if |a11| ≥ αω1 then
4 use a11 as a 1× 1 pivot
5 else
6 Let i = 1 and ωi = ω1

7 while no pivot has been chosen do
8 Let r be the row index of the first subdiagonal entry of maximum

magnitude in column i
9 ωr = maximum magnitude of any off-diagonal entry in column r

10 if |arr| ≥ αωr then
11 use arr as a 1× 1 pivot (i.e., s = 1 and P1 swaps rows and columns 1

and r)
12 else if ωi = ωr then

13 use

[
aii ari
ari arr

]
as a 2× 2 pivot (i.e., s = 2 and P1 swaps rows and

columns 1 and i, and 2 and r)
14 else
15 Let i = r and ωi = ωr
16 end

On the surface, the use and choice of the constant α seems obscure, but it is included

in an attempt to bound the growth of the elements of L (and therefore prevent the

kind of problem illustrated by the example above). Suppose that at any stage of the

factorization the pivot has been chosen and the row and column interchanges have

been performed. If the pivot was a 1× 1 pivot, then we have

ãij = bij − ci1
1

e11
c1j =⇒ |ãij| ≤ ω1 +

ω2
1

ωr
≤
(
1 +

1

α

)
ω1.

If however, a 2× 2 pivot was chosen then the (i, j) element of the submatrix is given

by

ãij = bij −
[
ci1 ci2

]
E−1

cj1
cj2

 ,
where

E−1 =

aii ari

ari arr

−1 =
1

det(E)

 arr −ari
−ari aii

 .
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By the symmetry of E, we have

det(E) = arraii − a2ri = arraii − ω2
r ≤ ω2

1 − ω2
r ≤ (α2 − 1)ω2

r .

If we assume α ∈ (0, 1), then we have |det(E)| ≥ (1− α2)ω2
r . Therefore,

|E−1| ≤ 1

(1− α2)ωr

α 1

1 α

 .
Since |cij| ≤ ωr, we have

|ãij| ≤
2(1 + α)ω2

r

(1− α2)ωr
=

(
1 +

2

1− α

)
ωr.

To determine α, we equate the maximum growth for two s = 1 steps with that for one

s = 2 step: (
1 +

1

α

)2

= 1 +
2

1− α
.

This reduces to the quadratic equation 4α2−α− 1 = 0. We solve this for the positive

root to find α = (1 +
√

17)/8 ≈ 0.64. With this value of α, it can be shown [12] that:

1. The entries of L are bounded above by max{1/(1− α), 1/α} ≈ 2.781.

2. Each 2× 2 pivot block Dii satisfies κ2(Dii) ≤ (1 + α)/(1− α) ≈ 4.56.

The bound on the elements of L has the effect of nicely bounding the norm of the

matrix L itself in terms of n. Since we know that all the elements are bounded above

by 2.781, we have ‖L‖2F ≤ n+ 1
2
n(n− 1)2.7812 ≤ 4n2 − 3n [12]. This bounding of the

elements of L is a major reason why rook pivoting may be preferred to partial pivoting

in many contexts, beyond just the modified Cholesky factorization.

Other values of α may be used instead. Fang and O’Leary note in particular that

α = 0.5 leads to tighter theoretical bounds on the elements of L but in practice seems

to actually perform more poorly in the context of the modified Cholesky factorization

than the value derived analytically above [21].

The ωi are a strictly increasing sequence, so the searching part of the algorithm

takes at most n steps. Therefore, the total cost of the rook pivoting strategy is

intermediate between partial and complete pivoting (i.e., between O(n2) and O(n3)).

Matrices that require searching the entire submatrix at every stage (and therefore cost
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the latter) are easy to construct. For example, the following family of matrices is from

[6]:


0 2

4 4

4 0 3

2 3 0

 ,



0 2

5 5

5 0 4

4 0 3

2 3 0


,



0 2

6 6

6 0 5

5 0 4

4 0 3

2 0 3 0


, . . .

The potential O(n3) cost would seem to suggest that rook pivoting is unsuitable for

use in a modified Cholesky algorithm because it would fail to achieve Objective 4.

However, numerical experimentation suggests that in practice, the number of compar-

isons required for a k × k submatrix is usually less than 5k/2, and therefore the total

number of comparisons required for the full matrix is usually only O(n2) [6]. Ashcraft,

Grimes and Lewis make a probabilistic argument suggesting that the expected number

of comparisons for such a submatrix is less than ek ≈ 2.718k [6, 12], which again sug-

gests a practical O(n2) bound. Similarly, Foster considers rook pivoting applied to the

factorization of symmetric matrices with independent identically distributed random

variables from any continuous probability distribution, both theoretically and through

numerical experimentation, and comes to the same conclusion in [23]. Cheng and

Higham—who chose rook pivoting as the default pivoting strategy for their modified

Cholesky algorithm—therefore considered it to be an acceptable choice and regarded

failure to achieve Objective 4 as unlikely to occur in practice [12].

Neal and Poole present empirical evidence in [55] that rook pivoting consistently

produces more accurate solutions to problems than Bunch-Kaufman pivoting, whilst

generally having a similar cost in practice.

It should be noted that Ashcraft, Grimes and Lewis in [6] devote a significant

amount of attention to the application of rook pivoting to sparse matrices. For many

applications involving dense matrices—although not the modified Cholesky factoriza-

tion because of the problem already identified—there is little incentive to choose rook

pivoting over partial pivoting since the latter is cheaper. However, in certain applic-

ations involving sparse matrices, rook pivoting may preserve sparsity where partial

pivoting does not and therefore may be preferred [18, section 5.2.2].
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Software implementations of rook pivoting are increasingly common. It is used in

the built-in ldl function in MATLAB [31, p. 144, 252], which is itself built on the

LAPACK routine DSYTRF RK; we discuss the latter further in section 4.2.

The other pivoting strategy introduced by Ashcraft, Grimes and Lewis in [6] is the

“fast” Bunch-Parlett strategy. This is also intermediate in cost between complete and

partial pivoting (i.e., between O(n2) and O(n3) comparisons). It is very similar to

rook pivoting but has proven to be less immediately popular and therefore we will not

describe it here. It may however be more efficient when implemented in block form

[6, 12].

3.1.2 The Cheng and Higham (CH) algorithm

The basic approach of this algorithm has already been described at the start of this

chapter: compute the factorization PAP T = LDLT and then perturb D to make it

positive definite. In order to achieve the objectives of a modified Cholesky algorithm

as far as possible, Cheng and Higham recommend using rook pivoting to find the indef-

inite factorization of A, although they do note that similar alternatives are permitted.

One of these is the fast Bunch-Parlett pivoting strategy already mentioned; they also

suggest that any of those described in [19] and [20] would be suitable.

After the factorization has been found we perturb the symmetric indefinite block

diagonal matrix D. To do this, we first consider the following. Let δ ≥ 0 and define

µX(A, δ) as the minimum distance from the n × n symmetric matrix A to the set of

all symmetric matrices with minimum eigenvalue δ, in the X-norm, i.e.,

µX(A, δ) = min{‖∆A‖X : λmin(A+ ∆A) ≥ δ}.

Then the following theorem of Higham [12, 34] tells us the values of µX in both the

2-norm and the Frobenius norm and also the perturbation matrices that give them.

Theorem 3.1 Let the symmetric matrix A ∈ Rn×n have the spectral decomposition

A = QΛQT , where Q is orthogonal and Λ = diag(λi). Then, for the Frobenius norm,

µF (A, δ) =

(∑
λi<δ

(δ − λi)2
)2
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and there is a unique optimal perturbation given by

∆A = Qdiag(τi)Q
T , where τi =

0, λi ≥ δ,

δ − λi, λi < δ.

For the 2-norm,

µ2(A, δ) = max{0, δ − λmin(A)},

and an optimal perturbation is ∆A = µ2(A, δ)I. The Frobenius norm perturbation is

also optimal in the 2-norm.

We can now summarise the CH algorithm in two steps, given a symmetric matrix A

and tolerance δ:

1. Use rook pivoting to find a symmetric indefinite factorization PAP T = LD̃LT .

2. Calculate the minimum perturbation in the Frobenius norm ∆D̃ such that

λmin(D̃ + ∆D̃) ≥ δ using Theorem 3.1. Let D = D̃ + ∆D̃. Then we have

P (A + E)P T = LDLT , where λmin(A + E) ≥ δ (and so in particular A + E is

positive definite if δ > 0).

Note that the algorithm does not compute E explicitly, unlike the diagonal perturba-

tion algorithms from Chapter 2. Cheng and Higham suggest using δ =
√
u ‖A‖∞ for

the tolerance, where u is the unit roundoff.

To make the perturbations in the second step and therefore calculate the matrix

D, we simply iterate over the diagonal blocks of D̃. If we have a 1× 1 block d̃i, then

we set di = max{δ, d̃i}. If instead we have a 2× 2 block D̃i, then we find its spectral

decomposition D̃i = Udiag(λ̃1, λ̃2)U
T , where the λ̃j (j = 1 or 2) are the eigenvalues,

and let Di = Udiag(λ1, λ2)U
T , where λj = max{δ, λ̃j}. The cost of making these

modifications is relatively small so the overall cost of the algorithm to highest order

terms is the just the cost of the first step, which we have already argued will usually

satisfy Objective 4.

Assuming that the pivoting strategy used in the factorization is backward stable—

and all those that have been discussed so far are [6, 9, 10]—then the CH algorithm

itself (and also the MS algorithm from the next section) is also backward stable (and

therefore numerically stable). In the presence of rounding error, the computed factors
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L and D are the exact factors not of P (A+ E)P T but of P (A+ E + F )P T , where

‖F‖2 ≤ cnu ‖A+ E‖2 , (3.1)

≤ cnu ‖L‖2 ‖D‖2
∥∥LT∥∥

2
, (3.2)

with cn a modest constant depending on n and u the unit roundoff [12].

Cheng and Higham considered the success of their algorithm in achieving Object-

ives 1–3 in [12] and we shall summarise their results here. Let A ∈ Rn×n be a symmetric

matrix with eigenvalues λn ≤ · · · ≤ λ1. By a theorem of Ostrowski [12], we have that

if λmin(A) ≥ 0 (i.e., A is at least positive semidefinite), then E is zero if

λmin(A) ≥ δλmax(LL
T ).

Alternatively, if λmin(A) < 0 then we have

‖E‖2 = λmax(E) ≤ λmax(LL
T )

(
δ − λmin(A)

λmin(LLT )

)
. (3.3)

The following bound can be established on the condition number of the perturbed

matrix A+ E,

κ2(A+ E) ≤ κ2(LL
T ) max

(
1,

λmax(A)

λmin(LLT )δ

)
. (3.4)

We can see that the success of the algorithm in satisfying Objectives 1–3 depends on

the quantities λmin(LLT ) and λmax(LL
T ) (and therefore κ2(LL

T )). Ultimately, Cheng

and Higham conclude that if L is well conditioned then their algorithm is guaranteed

to perform well [12]; however, Schnabel and Eskow comment that if it isn’t then the

bound on ‖E‖ is weak [71].

Cheng and Higham suggest that a significant advantage of their algorithm com-

pared to others is that it can easily take advantage of any existing implementation of

a symmetric indefinite LDLT factorization [12]. From the perspective of choosing a

modified Cholesky algorithm for the NAG Library, this seems to us a strong argument,

particularly since the preferred rook pivoting strategy has recently been included in

the library.

3.1.3 The Moré and Sorensen (MS) algorithm

Like the GMW and SE algorithms, the MS algorithm arose as a way to find des-

cent directions from indefinite Hessian matrices in optimization (see Chapter 8) [47].
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The algorithm is fundamentally very similar to the CH algorithm, in that we com-

pute an LDLT factorization of the indefinite matrix A and then perturb the result.

As previously noted, at the time of publication, Moré and Sorensen considered only

the Bunch-Kaufman and Bunch-Parlett pivoting strategies for computing the LDLT

factorization, ultimately suggesting use of the latter because of the problems already

noted when the former is used in a modified Cholesky algorithm. As a consequence of

this, Objective 4 would not be met and the algorithm would not be worthy of consid-

eration here. However, the algorithm can be very easily adapted to use rook pivoting

(or a similar alternative) instead and therefore remain viable [21].

The MS algorithm has the same basic two step structure as the CH algorithm

described in section 3.1.2, but the perturbations made in the second step differ. We

also take the same approach to calculate D as before in that we iterate over the

diagonal blocks of D̃. However, in the MS algorithm, if we have a 1 × 1 block d̃i,

then we set di = max{δ, |d̃i|} and if we have a 2 × 2 block D̃i, then we find the

decomposition D̃i = Udiag(λ̃1, λ̃2)U
T , where the λ̃j (j = 1 or 2) are the eigenvalues,

and set Di = Udiag(λ1, λ2)U
T , where λj = max{δ, |λ̃j|}. Again, we see that the MS

algorithm will satisfy Objective 4, if we ignore the worst case cost of rook pivoting.

Note that we do not not necessarily use the same value of δ as for the CH algorithm:

Moré and Sorensen suggest taking δ = u [47], where u is the unit roundoff.

It is not remarked upon by Moré and Sorensen but a connection between their

algorithm and another decomposition of the indefinite matrix A can be made. For any

square real matrix A, the polar decomposition is of the form A = UH, where U is an

orthogonal matrix and H is symmetric positive semidefinite. This factorization always

exists and is unique so long as A is not singular. Given the spectral decomposition A =

Qdiag(λi)Q
T , the factor H is given explicitly by H = Qdiag(|λi|)QT . In particular,

this implies that a nearest positive semidefinite matrix to A in the 2-norm is given

by (A + H)/2. Further, a good approximation to the nearest positive semidefinite

matrix to A is given by H itself [33]. When δ = 0, the perturbed matrix A + E

produced by the MS algorithm is in fact the positive semidefinite factor H from the

polar decomposition of A.

No explicit consideration of the success of the MS algorithm in meeting Objectives

1–3 is given in [47], however Fang and O’Leary perform the analysis in [21] and we
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Table 3.1: Objectives 1–3 considered for the MS algorithm.

Objective 1: E = 0 for λmin(A) ≥ δ
∥∥LLT∥∥

2

Objective 2: ‖E‖2 ≤ −2λmin(A)κ2(LL
T ) :

Objective 3 κ2(A+ E) ≤ κ2(LL
T )2κ2(A)

summarise their findings in Table 3.1. From the table, we see that the smallest and

largest eigenvalues of LLT are important here, as with the corresponding results for

the CH algorithm. The bound for ‖E‖2 is approximately twice as loose as for the CH

algorithm. Fang and O’Leary in [21] state that the bound on the conditioning of A+E

is generally superior to the CH algorithm, although our analysis in section 4.1.3 does

not necessarily support this conclusion. We shall compare the practical performance

of both algorithms in Chapter 4.

3.2 The LTLT factorization

Other than the LDLT factorization, one of the most useful factorizations of a sym-

metric indefinite matrix A is of the form A = LTLT , where T is a tridiagonal matrix.

Two methods of achieving this factorization were discovered independently in the early

1970s by Aasen [1], and Parlett and Reid [64]. Both versions are numerically stable

[1, 64] but the latter’s method costs about twice that of the standard Cholesky fac-

torization and is therefore too expensive for use in a modified Cholesky algorithm.

Aasen’s method however only costs about the same [1] and so may be suitable.

A pleasing property of this factorization is that the absolute values of all the entries

of the triangular matrix L are bounded above by one [6] which can often be desirable

[36, p. 224], but the key fact from our perspective is that, if A = LTLT , then A is

positive definite if, and only if, T is also positive definite. Hence Fang and O’Leary

in [21] propose the following variant of both the CH and MS algorithms: find the

factorization PAP T = LTLT and then apply either the CH or MS algorithms to

the tridiagonal matrix T [21]. The motivation here is that since T only has at most

two nonzero off-diagonal elements per row, the cost of applying either the CH or MS

algorithms to it is negligible and therefore the total cost of the algorithm (to highest

order terms) is just the cost of the initial factorization using Aasen’s method, which is
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guaranteed to be the same as the standard Cholesky factorization. This ensures that

Objective 4 is met.

The introduction of the LTLT factorization does have the effect of loosening the

bounds on both ‖E‖ and κ2(A+E) given in the previous two sections for both the CH

and MS algorithms, although Fang and O’Leary suggest that in practice their variants

generally achieve smaller values for both than the original algorithms [21]; this claim

is considered in Chapter 4.

It is also possible to apply any of the diagonal perturbation algorithms from

Chapter 2 to the tridiagonal matrix T instead of the CH or MS. However, since they

generally meet Objective 4 anyway, there does not appear to be any particular ad-

vantage in doing so.

Given the properties of the LTLT factorization (and Aasen’s method in particular)

described, practical implementations are surprisingly rare compared to the block LDL

factorization. Higham in [36, p. 224] states that he is only aware of one software

library containing Aasen’s method and ponders why this is so, speculating that it may

simply have proven easier to work with a block diagonal matrix than a tridiagonal one.

Anderson and Dongarra compare Aasen’s method to the Bunch-Kaufman factorization

in [3], concluding after experimentation on a Cray 2 machine that the latter leads to

superior performance when implemented in block form; however, it appears that the

codes used have been lost [6]. Ashcraft, Grimes and Lewis believe the deciding factor

between the two factorizations to be speed, although they do note that the data

available to them are unclear on this point [6].

Rozložńık, Shklarski and Toledo present a blocked algorithm—a modified version

of Aasen’s method—for computing an LTLT factorization of a symmetric matrix in

[65]. They compare the performance of an implementation of their algorithm with an

existing efficient blocked version of the Bunch-Kaufman factorization and find no sig-

nificant difference in performance, noting in particular that their results do not concur

with those of Anderson and Dongarra already mentioned. Another blocked variant

of Aasen’s method is proposed in [8] and the performance of an implementation on

modern (parallel) computer architectures considered in [7]; ultimately it is concluded

that the algorithm is competitive with existing indefinite factorization methods.

Although Higham was writing in 2002 when he stated that he believed Aasen’s
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method had only been included in one software library, implementations still remain

relatively uncommon. It has however recently been introduced into LAPACK [60].



Chapter 4

Selecting a Modified Cholesky

Algorithm for the NAG Library

As stated in Chapter 1, one of the primary aims of this dissertation is to decide which

of the existing modified Cholesky algorithms should be included in the NAG library.

In this chapter, we collate all the theoretical expectations of the algorithms discussed

in the previous two chapters, as well as data from numerical experimentation and

practical applications, and ultimately make that decision.

The four most prominent modified Cholesky algorithms are the GMW, SE, CH

and MS algorithms [21]. We shall focus our consideration on these and their variants

discussed in Chapters 2 and 3. We do not believe either of the truly distinct algorithms

discussed in section 2.4 merit further consideration. We will generally distinguish

between the SE90 and SE99 algorithms here because the latter is a significant revision

of the former by the original authors. Variants of the other algorithms will be discussed,

but not distinguished so fundamentally. For example, when we refer to the “GMW”

it may be a synecdoche both for the original algorithm and the GMW-I and GMW-II

variants discussed in section 2.3; similarly, when we refer to the CH and MS algorithms

we may mean both the originals and the LTLT variants mentioned in section 3.2. The

context should make clear which is meant and we will distinguish where necessary.

We will consider each of the four primary Objectives of a modified Cholesky al-

gorithm in turn and compare the success of the prospective algorithms at ensuring

they are met. We will then discuss any other pertinent information, before ultimately

making our conclusions (and decision) in the final section.

46
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Table 4.1: Suggested tolerances δ and the conditions for which matrices are not per-
turbed for the most prominent modified Cholesky algorithms.

Algorithm Tolerance δ E = 0 if...
GMW u λmin(A) ≥ δ
SE90 τγ = u1/3γ λmin(A) ≥ 1

2
n(n+ 1)δ

SE99 τ̃ γ = u2/3γ λmin(A) ≥ 1
2
n(n+ 1)δ

MS u λmin(A) ≥ δ
∥∥LLT∥∥

2

CH
√
u ‖A‖∞ λmin(A) ≥ δ

∥∥LLT∥∥
2

4.1 Achieving the objectives

4.1.1 Objective 1

Under what precise circumstances a matrix qualifies as sufficiently positive definite

varies for each of the algorithms. They all include a tolerance δ used to make this

determination. Table 4.1 records the suggested values for δ and the conditions under

which no perturbation is made for each of the algorithms. Here, γ is the largest

diagonal element of the matrix A (in magnitude), as in Chapter 2 and u is the unit

roundoff.

The conditions under which the algorithms actually perturb the matrix being fac-

torized are all clear and well-defined. The GMW is the most straightforward, only

ever perturbing a matrix if it is—at least practically—positive definite. All of the

other algorithms do permit the possibility of perturbing a positive definite matrix,

although it could be argued that this is sometimes advantageous [70]. It has been

found in applications that the different conditions for perturbation can lead to differ-

ing performance; see [68] for an example when this is the case for the GMW and SE90

algorithms. Overall, however, we believe that all of the algorithms generally achieve

this objective and that there is little difference between them in this regard.

In their experiments with random distance matrix completion problems in [22],

Fang and O’Leary believed that the suggested tolerance parameter δ =
√
u ‖A‖∞ for

the CH algorithm was too small for their purpose and used the tolerance τγ suggested

for the SE90 algorithm instead [21].
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Table 4.2: Bounds on the size of the perturbation matrix E for the most prominent
modified Cholesky algorithms.

Algorithm Upper bound
GMW ‖E‖∞ ≤ O(n2)
SE90 ‖E‖∞ ≤ φ+ 2τ

1−τ (φ+ γ)

SE99 ‖E‖∞ ≤ Φ + 2τ
1−τ (Φ + γ)

MS ‖E‖2 ≤ −2λmin(A)κ2(LL
T )

CH ‖E‖2 ≤ λmax(LL
T )

(
δ − λmin(A)

λmin(LLT )

)

4.1.2 Objective 2

In the previous two chapters we stated the established upper bounds on the norm of

the perturbation matrix E for each of the algorithms under consideration and these

are collected in Table 4.2. Here, φ and Φ are as defined in section 2.2.1. Note also

that we do not give the upper bound for the GMW explicitly here but simply state

its order.

Considering just the diagonal perturbation methods, the upper bound for the

GMW algorithm is approximately n2 multiplied by the maximum element inA, whereas

for the SE algorithms it is only about 2n times the largest element in A [68], so can

be considerably smaller. The bound for the SE99 algorithm is slightly looser than the

original but, as described in Chapter 2, only by a small amount. The two indefin-

ite LDLT factorization algorithms have bounds defined in terms of the smallest and

largest eigenvalues (and therefore the conditioning) of LLT , and the smallest eigen-

value of A; as previously noted, this has the advantage of ensuring a good bound if L

is well conditioned and the downside of only establishing a weak bound if it isn’t. Of

the two, the bound for the CH algorithm is about half that of the MS algorithm [21].

Ultimately, we believe that all four algorithms have acceptable theoretical limits on

the size of E.

After introducing their algorithm in [70], Schnabel and Eskow performed numer-

ical experiments to compare its performance to both their expectations and the GMW

algorithm. The natural quantity to consider when evaluating the success of any al-

gorithm in achieving Objective 2 is the ratio of the norm of E to the norm of the

minimal perturbation to A that makes it positive semidefinite. In particular, Schnabel
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and Eskow considered r∞ = ‖E‖∞ /|λmin(A)|, which they call the “relative maxadd”,

although we follow the later convention of Cheng and Higham in using r∞. Schnabel

and Eskow favoured the∞-norm for measuring the success of this objective, although

since the perturbation matrices they are considering are diagonal, the 1- and 2-norms

are the same. They tested both their algorithm and the GMW on a collection of 90 test

matrices of dimension n = 25, 50 or 75, with eigenvalues in the ranges [−1, 104], [−1, 1]

and [−104,−1]; ten for each combination of dimension and eigenvalue range. Each test

matrix was of the form Q1Q2Q3D(Q1Q2Q3)
T , where each Qi is a Householder matrix

of the form Qi = I − 2wwT

wTw
, where w ∈ Rn is a vector with components randomly

generated from a uniform distribution in the range [−1, 1] and D is a diagonal matrix

with diagonal elements likewise randomly generated from a uniform distribution in the

desired eigenvalue range. Note that in the [−1, 104] case, steps were taken to ensure

that at least one element of D was negative and therefore the test matrix was truly

indefinite.

Schnabel and Eskow found that the their algorithm produced values of r∞ between

1.06 and 2.5 for the 90 test matrices, compared to a range of 1.6 to 77.8 for the

GMW algorithm, which they also found performed particularly poorly on matrices

with eigenvalues in the range [−1, 1]. Comparing on a matrix-by-matrix basis for each

of the matrices in the test set, the SE algorithm produced perturbation matrices 1.3

to 60.9 times smaller than the GMW (and in particular 3.5 to 60.9 times smaller for

those matrices with eigenvalues in [−1, 1]).

Interestingly, Schnabel and Eskow found that when they performed further experi-

mentation on 30 matrices of dimension 25 with eigenvalues in the range [−1, 1] but this

time ensured that at least three eigenvalues were negative, for one particular matrix

the GMW achieved a significantly smaller value of ‖E‖∞ than the SE algorithm. This

was the only one of the 120 matrices they tested for which this was the case. They

established that the problem came down to a 4×4 submatrix and created the following

similar 4× 4 matrix that illustrated the issues even more clearly:

A =


1890.3 −1705.6 −315.8 3000.3

−1705.6 1538.3 284.9 −2706.6

−315.8 284.9 52.5 −501.2

3000.3 −2706.6 −501.2 4760.8

 . (4.1)
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The eigenvalues of this matrix are −0.378, −0.343, −0.248 and 8242.869. The differ-

ence in size between the perturbations produced by the SE90 and GMW algorithms

was stark, with the E from the latter being almost a thousand times smaller than that

from the former; clearly a worrying disparity. Schnabel and Eskow deduced that the

problem was the one discussed in section 2.2.1 and suggested that applications would

reveal whether it was truly necessary to correct it (ultimately of course deciding that it

was in [71]). Nevertheless, they conclude that overall their experiments suggested that

the SE90 algorithm is generally successful in achieving a smaller E than the GMW

algorithm in practice.

After revising their algorithm in [71], Schnabel and Eskow repeated their numerical

experiments using the same set of test matrices as in [70]. They found that the size

of the perturbation produced by the SE99 algorithm was identical to the SE90 for

the matrices with eigenvalues in the ranges [−1, 1] and [−104,−1] but was usually

much smaller for those matrices with eigenvalues in the range [−1, 104], for which it

also generally produced a smaller perturbation than the GMW algorithm, albeit only

slightly.

Concerning the problematic matrices that motivated the revision of the algorithm,

further experiments with test matrices of dimension n = 25, 50 or 75 with eigenvalues

in the range [−1, 104] and with either 3 or 9 negative eigenvalues, produced significantly

smaller values of r∞ than before and which were almost always smaller than the GMW

as well. Schnabel and Eskow also considered another set of 33 indefinite Hessian

matrices, provided by Gay, Overton and Wright, that arose from barrier methods in

constrained optimization, for which the SE90 algorithm had proven problematic [24].

The dimension of these matrices was generally small, with the largest having dimension

55 and the majority being much smaller than that. For these matrices too they found

the same pattern: the SE99 algorithm produced much smaller ‖E‖∞ than the SE90 (by

up to seven order of magnitude) and slightly smaller than the GMW algorithm. For

the particular matrix (4.1), they found that the SE99 had ‖E‖∞ = 1.76, as opposed to

2.73 for the GMW and 2778 for the SE90 algorithm. They concluded that their new

algorithm was generally more successful at achieving Objective 2 than the previous

one and that it successfully corrects the known issues.

In order to determine the success of their algorithm in achieving this objective,
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Cheng and Higham in [12] defined the quantities

rF =
‖E‖F
µF (A, δ)

and r2 =
‖E‖2
|λmin(A)|

, (4.2)

where µF (A, δ) is, as defined in Chapter 3, the minimal distance from A to the set of

matrices with smallest eigenvalue greater than or equal to δ (and therefore in particular

is the distance to the set of positive semidefinite matrices when δ = 0) in the Frobenius

norm. Note that when E is diagonal (as in the GMW and SE algorithms), r2 = r∞.

To assess the practical performance of their new algorithm, Cheng and Higham

then ran a very similar set of numerical experiments to those undertaken by Schnabel

and Eskow in [70] that have previously been described. However, their test matrices

were instead of the form QΛQ, where Λ = diag(λi), with the λi being chosen from

one of the same three random uniform distributions used by Schnabel and Eskow,

and Q being a random orthogonal matrix generated using the qmult function from

the Matrix Computation Toolbox of Higham [32]. Note that qmult can now be called

from MATLAB using the built-in gallery function for generating test matrices [31,

Chapter 6]. The matrices Cheng and Higham tested were of dimension n = 25, 50

or 100, and 30 different matrices were generated for each eigenvalue distribution and

dimension, giving a total of 270 matrices considered. For each matrix, the quantities

rF and r2 were calculated for the CH, GMW and SE90 algorithms. Three nonran-

dom matrices from the Matrix Computation Toolbox were also considered: Clement,

Dingdong and Ipjfact. Details of these matrices can be found in [12] or [32]. Altern-

atively, all of these but Dingdong are now included as test matrices in MATLAB and

can be constructed using the gallery function [31, Chapter 6].

Ultimately Cheng and Higham concluded that none of the three algorithms they

considered was uniformly superior to the others at achieving this objective. It appeared

that the SE90 algorithm generally produced smaller r2 for matrices with eigenvalues

in the ranges [−1, 104] and [−1, 1] than the others, no matter what the dimension,

although for rF the CH algorithm was generally slightly smaller for matrices with

eigenvalues in the range [−1, 1]. The CH algorithm was also particularly successful

at minimizing the ratios r2 and rF when the matrix was negative definite (i.e., the

eigenvalues were in the range [−104,−1]), with both generally being extremely close

to one. Cheng and Higham elucidate why this is to be expected as follows. Let A be
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Table 4.3: Measures of the size of the perturbation made to the matrix A from (4.1)
for the most prominent modified Cholesky algorithms.

CH MS MS SE90 SE99
rF 1.3 2.7 2.7 3.7× 103 1.8
r2 1.7 3.3 2.7 2.8× 103 1.8

negative definite. Then the CH algorithm computes the factorization P (A+ E)P T =

L(δI)LT . Therefore

rF =
‖E‖F

(
∑

i(δ − λi)2)1/2

≤ ‖E‖F
‖A‖F

=

∥∥A− δ · P TLLTP
∥∥
F

‖A‖F

≤
‖A‖F + δ

∥∥LLT∥∥
F

‖A‖F

≤ 1 +
(4n2 − 3n)δ

‖A‖F
,

so rF can only ever be slightly larger than 1. A similar analysis applies for r2.

Unlike Schnabel and Eskow, and Cheng and Higham, Fang and O’Leary in [21]

performed numerous numerical experiments with all of the algorithms we are consid-

ering, including the MS and the SE99, as well as the three variants of the GMW and

SE algorithms discussed in section 2.3 and the LTLT variants of the CH and MS from

section 3.2. Like Cheng and Higham, they also use the ratios r2 and rF to measure

the success of an algorithm in meeting the objective. For the matrix (4.1) identified

by Schnabel and Eskow as causing difficulty for the SE90 algorithm, Table 4.3 records

the values of the two ratios for the algorithms we are considering.

The indefinite Hessian matrices produced by Gay, Overton and Wright from [24]

and tested by Schnabel and Eskow in [71] were also considered. For this set, the SE99

was by far the most successful of the original algorithms at producing the smallest

r2, doing so for almost two-thirds of the matrices; the CH algorithm achieved the

smallest r2 for the bulk of the others. The GMW and MS algorithms also mostly

performed well, but the SE90 did not (which is to be expected since these were precisely

the matrices on which it was found to struggle); however, the CH algorithm also

produced perturbations an order of magnitude too large on three occasions, and once

a perturbation that was two orders of magnitude larger than necessary. It should be
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noted that only the values of r2 were given, not rF .

Fang and O’Leary also undertook numerical testing with random matrices of the

form QΛQT , where Q and Λ are as before. Precisely how the random orthogonal

matrices Q were generated is not described in detail, although it is stated that the

method of Stewart [73] is used, which is the same algorithm used by the qmult function.

They follow the lead of Cheng and Higham, and Schnabel and Eskow in considering the

three different eigenvalue ranges [−1, 104], [−1, 1] and [−104,−1]. Multiple (usually 30)

tests were performed, on different sets of matrices, with different dimensions (usually

n = 50 or 100); for full details, see [21]. Comparing just the diagonal perturbation

algorithms, they conclude that the SE99 and their variant GMW-II (described in

section 2.3) algorithm are generally the most successful at minimizing E for matrices

with eigenvalues in [−1, 104] and that the SE-I algorithm is most successful for the

other ranges, although the SE99 algorithm in particular also performed well.

Concerning the symmetric indefinite LDLT algorithms, the CH usually produced

a smaller E than the MS algorithm. Fang and O’Leary concluded that their variants

incorporating the LTLT factorization generally outperformed the originals in achiev-

ing this objective, however, the originals did usually also perform well, with the few

exceptions already mentioned.

Data on how well most of the algorithms we are considering meet Objective 2

in practical applications are also available. Schlick and Xie consider the GMW, SE90

and CH algorithms for dealing with potentially indefinite preconditioners in a Newton-

like method for large-scale chemical applications in [77]. They ultimately decide that

all three generally perform well but are also capable of producing inordinately large

perturbations for some problems.

It should be emphasised at this stage that it has been found in certain applications

that a strictly smaller ‖E‖ does not necessarily give superior performance overall, as

acknowledged by Schnabel and Eskow in [71]. For example, Schlick compared the

performance of the GMW and SE90 algorithms in a truncated-Newton minimization

method used in the context of a large-scale optimization problem in computational

chemistry [68]. She found that the SE90 algorithm generally produced smaller per-

turbation matrices E than the GMW, sometimes by a factor of up to two orders of

magnitude, but that the performance of the algorithms was comparable overall.
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Table 4.4: Upper bounds on κ2(A + E) for the most prominent modified Cholesky
algorithms.

Algorithm κ2(A+ E)

GMW ≤ O

(
n3
(
ξ+γ
δ

)n)

SE90 ≤ O

(
n34n

(
ξ+γ
δ

))

SE99 ≤ O

(
n34n

(
ξ+γ
δ

))
MS ≤ κ2(LL

T )2κ2(A)

CH ≤ κ2(LL
T ) max

(
1, λmax(A)

λmin(LLT )δ

)
.

4.1.3 Objective 3

We collate all the relevant a priori upper bounds on κ2(A + E) established in the

previous two chapters in Table 4.4.

The bounds for the diagonal perturbation algorithms are all exponential in n and

therefore looser than we would like. The bounds for the MS and CH algorithms have

the advantage of being expressed in terms of the eigenvalues of the matrices A and

LLT , and the conditioning of the latter as well. If λmax(A) < λmin(LLT )δ, then the MS

algorithm bound is κ2(LL
T )κ2(A) times the bound for the CH algorithm and therefore

will generally be the larger. If this is not the case then the ratio of the bound for the

MS algorithm to the bound for the CH algorithm is

κ2(LL
T )2κ2(A)

κ2(LLT ) λmax(A)
λmin(LLT )δ

=
κ2(LL

T )κ2(A)λmin(LLT )δ

λmax(A)

=
λmax(LL

T )δ

λmin(A)

≥ δ

λmin(A)
.

Therefore, we see that which of the bounds is the smaller very much depends on both

δ and λmin(A).

All of the numerical experiments undertaken by Schnabel and Eskow in [70] and

[71], Cheng and Higham in [12], and Fang and O’Leary in [21] described in the previous

section also considered the conditioning of the perturbed matrix A + E, so we will
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discuss their results and conclusions without describing the details of their experiments

again.

In [70], Schnabel and Eskow concluded that the SE90 and GMW algorithms both

produced acceptably conditioned matrices, with the order of κ2(A+ E) ranging from

101 to 106 for the SE90 algorithm and 101 to 108 for the GMW algorithm for all of the

matrices in their test set; on a matrix-by-matrix basis, they were always within two

orders of magnitude of each other. The SE90 algorithm consistently produced better

conditioned matrices for matrices with eigenvalues in [−1, 1] and [−104,−1], whereas

the GMW algorithm was superior for the range [−1, 104].

Things were less clear in their follow up experimentation accompanying the intro-

duction of the SE99 algorithm. For the 33 indefinite Hessian matrices of Gay, Overton

and Wright, the condition numbers of the perturbed matrices produced by the new

algorithm were often significantly higher than both the GMW and SE90, with 13 of

them being about 109 to 1011, although it is stated that the two highest values for the

GMW exceeded this. Schnabel and Eskow do note that the original matrices were ex-

tremely ill conditioned and suggest it is important that this property be retained. For

the 120 random matrices initially tested in [70], this pattern is also evident, with the

SE99 algorithm consistently producing more ill conditioned matrices than the SE90

or GMW algorithms—sometimes by as much as five orders of magnitude—but the

GMW algorithm occasionally producing matrices more ill conditioned than either of

the others.

Cheng and Higham include the condition numbers κ2(A + E) for 90 matrices of

dimension n = 25, 30 of each with eigenvalues in the three ranges being considered.

Results for n = 50 and 100 were stated to be similar. They largely supported the

assessment of Schnabel and Eskow from [70], finding that the SE90 algorithm gener-

ally produced better conditioned matrices than the GMW algorithm, except for those

matrices with eigenvalues in the range [−1, 104]. Their own algorithm generally pro-

duced higher condition numbers than either, for matrices with eigenvalues in all three

ranges.

The most extensive testing was done by Fang and O’Leary [21]. Experimentation

with random matrices suggested that the MS algorithm is usually better conditioned

than the CH algorithm, except for matrices with eigenvalues in [−104,−1], for which
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they were very similar. Introducing the LTLT factorization to the CH or MS al-

gorithms as in section 3.2 did not generally improve the conditioning of the resultant

matrix. On the set of random matrices described previously, the SE99 algorithm

generally produced better conditioned matrices than the CH algorithm, except for

matrices with eigenvalues in the range [−1, 104]. Among the diagonal perturbation

variants from section 2.3, the GMW-II algorithm was very successful at achieving a

small condition number. For the matrix (4.1), the SE90 algorithm had by far the

smallest condition number of all the algorithms we are considering, but the SE99 al-

gorithm had easily the highest (of order 1010). Concerning the 33 matrices of Gay,

Overton and Wright, the CH algorithm consistently produced condition numbers of

107 or 108, with one being order 109. The others were much more variable, with the

GMW and SE90 algorithms generally the best.

Specific references to the success of the algorithms at meeting Objective 3 in applic-

ations are scarce. This could suggest that in practice it often may not be as important

as we have supposed.

4.1.4 Objective 4

Both of the diagonal perturbation algorithms meet this objective (see Chapter 2). In

some applications the SE algorithm has proven to be the more efficient of the two [15]

and in others the GMW algorithm has [68]; the difference may simply come down to

the efficiency of the implementation.

The real issue here is the rook pivoting strategy employed to find the indefinite

LDLT factorization used in the CH and MS algorithms. This can add an additional

cost of O(n3) comparisons for certain matrices. The analyses of Ashcraft, Grimes and

Lewis [6] and Foster [23] referred to in Chapter 3 suggest that matrices of this form

will be rarely encountered in practice. Cheng and Higham recorded the number of

comparisons required for the rook pivoting used for each of the matrices they con-

sidered in their numerical experiments previously described. We include these results

in Table 4.5. As can be seen from the table, the maximum number of comparisons

required was always smaller than n2 and the average was approximately 0.6n2.

A pragmatic argument for the practicality of rook pivoting is its continued pop-

ularity. For example, as already noted, it is the pivoting strategy used for the built-in
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Table 4.5: Number of comparisons required for rook pivoting for the matrices in the
test set used by Cheng and Higham in [12].

Dimension 25 50 100
max 523 2188 8811
mean 343.9 1432.8 5998.4

ldl function in MATLAB [31]. This does suggest that in many applications at least

it has proven to be adequately efficient.

4.2 Other considerations

Implementations of the modified Cholesky factorization in software libraries are scarce.

However, the SE90 algorithm was used as a preconditioner in the LANCELOT [13]

package for nonlinear optimization problems [71].

From a software engineering perspective, the MS and CH algorithms have the

advantage over the others of being extremely easy to implement once the LDLT

factorization has been found. Cheng and Higham created a MATLAB code that

implements their algorithm in about twenty lines of code, which can be found at

Higham’s GitHub page [39], and this author did the same for the algorithm of Moré

and Sorensen (provided as the function more sorensen in Appendix E). Given that

symmetric LDLT factorization itself is included in almost all of the major numerical

software libraries, this should be considered a major advantage for those algorithms

that employ it.

Ashcraft, Grimes and Lewis provide implementations of symmetric LDLT fac-

torization with rook pivoting that make use of both Level 2 and Level 3 BLAS in

[6]. Symmetric indefinite LDLT factorization with rook pivoting was implemented for

LAPACK 3.5.0 as the routine DSYTRF ROOK and later revised for LAPACK 3.7.0 as the

routine DSYTRF RK [61]. The latter has been implemented as a NAG Library routine,

currently not user-callable but intended to be included with the next major release of

the library; we could take advantage of this were we to choose to implement either the

CH or MS algorithms.

The GMW and SE algorithms are trickier—although not necessarily difficult in
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and of themselves—to translate into effective code. However, Daydé implements a

block version of the SE90 algorithm that uses Level 3 BLAS to improve efficiency in

[14].

The structure of the MS and CH algorithms also lends itself well to parallel com-

puting. Once the indefinite factorization has been computed, we iterate over the block

diagonal matrix D, modifying each 1× 1 or 2× 2 block in turn; the modifications are

all independent, so therefore they can be performed in parallel. The SE and GMW

algorithms also have some scope for parallelism, but not to quite the same extent.

A major disadvantage of the MS and CH algorithms compared to the SE and GMW

algorithms is that they do not explicitly compute the perturbation matrix E. It can

easily be constructed from the computed matrices L and D, but this requires at least

one dense matrix multiplication (LD · LT ), thus incurring an additional O(n3) cost.

For some applications that require E explicitly, this could well be too expensive.

In terms of storage, for certain large-scale problems the SE algorithm has occasion-

ally been preferred to the GMW because it does not require the full matrix initially at

once, but only the diagonal1. Note that both the MS and CH algorithms also require

the full matrix before they can begin.

So far, we have not distinguished between dense and sparse indefinite matrices.

However, it has been found in some applications that modified Cholesky algorithms

may exhibit different behaviour depending on the sparsity of the matrix to which they

are applied [68]. The CH and MS algorithms have the advantage of being able to

utilise the efficient implementation of the symmetric LDLT factorization with rook

pivoting for sparse matrices written by Ashcraft, Grimes and Lewis [6, 12].

It has been found that which modified Cholesky algorithm is most suitable can be

highly dependent on the application for which it is used and it is difficult to know

beforehand which it will prove to be [68]. It may therefore be wise to consider likely

applications of the algorithm before deciding which should be chosen. In particular,

for the nearest correlation matrix application that prompted the decision to include

the modified Cholesky factorization in the NAG Library, Higham and Strabić conclude

after numerical experimentation with the GMW, SE90, SE99 and CH algorithms that

1Recall from section 2.1 that the GMW algorithm needs to first calculate ζ, the maximum mag-
nitude off-diagonal element of the matrix, before beginning the factorization.
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the CH algorithm is generally the best in this regard [40]. We repeat their experiments

with the MS algorithm in Chapter 7 and confirm that this remains so.

In certain contexts matrices with particular ranges of eigenvalues may be more

or less likely to occur than others; for example, Fang and O’Leary consider negative

definite matrices unlikely to occur in some optimization applications and matrices

that are close to positive definite to be particularly common, which would suggest

algorithms that perform better in this range would be preferred for those applications.

In Chapter 7 we discuss an application of the modified Cholesky factorization for which

the matrices in question have often been erroneously believed to be positive definite

and so are therefore usually close to it.

4.3 Conclusion

All of the algorithms we are considering are numerically stable (see Chapters 2 and

3), so there is little to distinguish them in that regard. However, the CH and MS

algorithms have the advantage over the diagonal perturbation algorithms in that the

nature of their upper bounds on the norm of the perturbation matrix and the condition

number of the perturbed matrix allow us to estimate the quality of the factorization a

priori; it is usually unclear beforehand if the GMW and SE algorithms will perform well

[12]. Therefore, we believe that with regards to theoretical expectations of achieving

Objectives 1–3 in particular the CH and MS algorithms have the edge over the GMW

and SE.

Our conclusions from consideration of the numerical experiments and practical

applications detailed in the previous section largely concur with those of Cheng and

Higham in [12]: none of the algorithms is uniformly superior to the others and all are

capable of experiencing difficulties in some contexts. The SE algorithms—particularly

the SE99 and SE-I of Fang and O’Leary—do appear overall to be the best at meeting

Objective 2 and ensuring the perturbation made is as small as possible, but the CH

algorithm in particular was usually competitive. The conditioning of the perturbed

matrix for the MS and CH algorithms was generally more consistent—albeit perhaps

consistently high—than for the GMW and SE algorithms, which varied unpredictably.

We make a broader remark at this juncture. There does not appear to be any
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particular reason why it is necessary or advantageous to restrict ourselves to diagonal

perturbations, in the general case. There may well be applications for which we do

not wish to perturb the rest of the matrix, but there is no cause to believe that this

will usually be the case.

Since it is difficult to conclude that any one of the algorithms is superior to the

others, we believe that ultimately the deciding argument must be the pragmatic soft-

ware engineering one. Although the SE and GMW algorithms are not difficult to code

in and of themselves, the CH and MS algorithms are extremely simple to implement

once an LDLT factorization with rook pivoting has been found—and this is now in

the NAG Library. We therefore decided that we should implement either the CH or

MS algorithms. Since we also believe that the underlying theory for the CH algorithm

is more well-developed than for the MS algorithm, we ultimately chose to implement

the former.

Thus far in this section we have not discussed the major potential problem with

the indefinite factorization algorithms: the potential O(n3) comparisons required for

the rook pivoting strategy. However, we are satisfied from the analysis and numerical

experimentation detailed in the previous sections that this is very unlikely to occur

in practice. Of course, we could ensure that the cost is only O(n2) by incorporating

the LTLT factorization of Aasen, as suggested by Fang and O’Leary, whose numerical

experimentation also suggests that this is not harmful and may occasionally even be

beneficial. However, we do not believe that there is enough justification to do this by

default—particularly since efficient implementations of Aasen’s method are relatively

rare—but that it should be explored as a possible solution for recalcitrant matrices or

those for which there is reason to believe excessive cost is likely. There may well be

situations in which we wish to further bound the entries of L, in which case it may

also be regarded as a possibility.



Chapter 5

Implementing the Cheng-Higham

Algorithm for the NAG Library

In order to fully understand what is required of our implementation of the Cheng-

Higham modified Cholesky algorithm, we must first give a little background on NAG

itself.

5.1 NAG and the NAG Library

Founded as an academic collaboration between several British universities in the

1970s, NAG1 is now a software company with expertise in high-performance com-

puting (HPC) and mathematical software. They are most well-known for the NAG

Library, a collection of over 1700 routines for solving mathematical problems. This

is sold as a commercial product, although NAG itself is a non-profit organisation: all

proceeds are re-invested in academic research and further development of its work

[54]. The NAG Library is widely-used both in academia and industry [48]. The salient

points here are that any code contained in the NAG library must be both extremely

robust, able to handle unexpected input or errors without breaking down, and port-

able, capable of being run on a wide variety of machines with correspondingly large

differences in architectures.

These aims are reflected in the NAG Library itself. The NAG kernel is written in

1Originally, this stood for “Nottingham Algorithms Group”, as the project was initially based at
the University of Nottingham.
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either Fortran or C, but several wrappers are built on top of it that allow interoperab-

ility with many other languages, such as Python or Java. Our implementation of the

Cheng-Higham modified Cholesky algorithm is written in Fortran 95.

Of course, we also wish for our implementation to be as stable and accurate as

possible, as with any numerical algorithm. Efficiency is also highly desirable. NAG

prides itself on the efficiency of its software and this would obviously also be of great

importance to users of the library. It is important however to ensure that this is not

achieved at the expense of either accuracy or stability.

5.2 The F01MDF routine

It is intended that our new modified Cholesky factorization routine will be included in

the Mark 27 release of the library, which should be available commercially from 2018.

The name chosen for the routine was F01MDF. The first three characters identify the

section of the library in which it is held: chapter F contains linear algebra routines and

section F01 those which deal with “matrix operations,” a broad category that includes

routines for matrix inversion, matrix factorizations and matrix functions, as well as

more fundamental matrix operations like transposition.

5.2.1 Documentation

As with any software library, it is vital that any routine included in the NAG Library

be as well-documented as possible in order for users to understand how to effectively

use it. In fact, writing the accompanying documentation is often the first step of the

development cycle for any new routine in the NAG Library and this was also true for

F01MDF. Working this way is useful because it forces the developer to consider before

beginning exactly what users want from the routine and how it will be delivered. The

documentation for the F01MDF routine will be included in the user manual for the Mark

27 release of the NAG library; the Mark 26 manual can be viewed here [50].

5.2.2 Arguments

The arguments of the the Cheng-Higham modified Cholesky algorithm as described in

section 3.1.2 are simple: it takes a symmetric matrix A and a tolerance δ as input and
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calculates L and D. Two of the desired inputs (A and δ) and outputs (L and D) of our

routine are therefore clear. We do not necessarily need to compute the permutation

matrix P explicitly but since it is required to fully describe the factorization, it is an

obvious third output. The practical question is, how do we accept (or return) these

inputs (or outputs)?

The first thing to consider is that the matrix being factorized is symmetric. So in

terms of storage, it is cheaper to simply work with either the upper or lower triangular

part of A; for this reason, it is also entirely possible that the user has only actually

stored one of these. A standard input argument therefore in many NAG routines that

handle symmetric matrices is uplo, a character type defining which part of the matrix

we store and reference: L for lower, or U for upper, corresponding to the lower or upper

triangular part of the matrix. The other half of the matrix is neither referenced nor

stored. We therefore adopted uplo as an input for F01MDF. The matrix A itself is

stored in the two-dimensional array a. Note that we do not verify that a is actually

symmetric: this is assumed.

The tolerance δ is more straightforward. The corresponding input variable delta

is simply a real data type. It was considered whether to allow the possibility of a user

not entering a value for delta and using the value δ =
√
u ‖A‖∞ suggested by Cheng

and Higham as a default in that case, but this was ultimately rejected as unnecessary.

Although it may be possible to calculate the dimension n of the matrix A directly

from the input array a, in practice it is simpler to also make this an input. The

routine therefore takes an integer input n which stores the value of n. Whenever

we use arrays to store the entries of matrices, the leading dimension of the array is

important. Roughly speaking, this is an (integer) increment used to find the starting

point of the next column (or row) of the matrix, depending on whether the array

is stored in memory in column-major (or row-major) form. It is a standard input

argument used in many NAG linear algebra routines and we therefore include it here

as the variable lda. Note that Fortran stores arrays in column-major order and so

this is the NAG standard for all of its Fortran library routines. A fuller explanation

of the leading dimension and its importance in matrix computations can be found for

example here [45] and a considerably more detailed one in the LAPACK user guide

[2].
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In order to compute the indefinite LDLT factorization, we use the LAPACK routine

DSYTRF RK, which we shall discuss further in section 5.2.3. Using this mandates some

of the arguments of our routine. For the sake of economy, rather than using new

arrays to store L and D explicitly, DSYTRF RK overwrites the entries of a in such

a way that the user can construct them if they desire. The main diagonal of a is

overwritten by the main diagonal of the matrix D. Since D is block diagonal, the

off-diagonal elements also need to be stored—but, as it is symmetric, we actually only

need to store either the subdiagonal or superdiagonal elements. Since there is only

ever a nonzero off-diagonal element when we have a 2 × 2 block, we only strictly

need an array of length n/2 to store them. However, DSYTRF RK outputs the entire

sub/superdiagonal, including the zero elements, as the one-dimensional, length n array

offdiag2; the whole sub/superdiagonal is stored because doing otherwise makes the

code unnecessarily convoluted.

If uplo == ’L’, then L is effectively stored in the strictly lower triangular part of

a; we say “effectively” because since it has unit diagonal, it is not actually necessary to

store this. Similarly, if uplo == ’U’, then the triangular matrix is effectively stored

in the strictly upper triangular part of a. Note however that this factor is not L or LT

but a distinct upper triangular matrix; this is discussed in detail in section 5.2.3.

It is unnecessary to calculate the permutation matrix P explicitly. Instead we store

the permutation information in the integer array ipiv. This is another output of the

DSYTRF RK routine used to compute the LDLT factorization. Details of how the array

actually stores the permutation information can be found in the documentation for

DSYTRF RK [61] and will be included in the documentation for the F01MDF routine when

it is released. A final argument is also required by the routine, ifail. This is used as

part of the standard error handling procedure in many NAG Library routines. Details

can be found in [49].

A full description of all the arguments of the F01MDF routine will be available with

the documentation in the user manual for the Mark 27 release of the NAG Library,

although we include a brief summary here in the form of Table 5.1. The documentation

2Of course, the sub/superdiagonal of an order n matrix is of length n − 1. However, offdiag
requires the extra element to accommodate another consequence of the choice of uplo: when uplo

== ’U’, the sub/superdiagonal is stored in offdiag(2) to offdiag(n); if uplo == ’L’ it is stored
in offdiag(1) to offdiag(n - 1).
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Table 5.1: Arguments of the F01MDF NAG Library routine.

Argument Description
uplo INPUT: Specifies which half of the matrix we store/reference
n INPUT: The dimension of A
a INPUT: The matrix A; OUTPUT: L and D

lda INPUT: Leading dimension of a
offdiag OUTPUT: Sub/superdiagonal of D
ipiv INPUT/OUTPUT: Permutation information
delta INPUT: Tolerance level δ
ifail OUTPUT: Used in error handling

will also include code for an example program showing how to explicitly construct the

matrices L, D and P , and use them to find the perturbation matrix E.

5.2.3 Computing the indefinite factorization

NAG has worked extensively on the LAPACK project for many years and sections F07

and F08 of the NAG Library contain routines implemented from LAPACK codes. As

mentioned in section 4.2, one of these is an implementation of DSYTRF RK for LDLT fac-

torization with rook pivoting [61], allowing us to make use of it. The DSYTRF RK routine

depends on two other auxiliary LAPACK routines, DSTYTRF2 RK [59] and DLASYF RK

[57]. Both of these actually perform LDLT factorization with rook pivoting, however

the latter is a blocked version and the former unblocked. After determining the block

size b, DSYTRF RK uses the blocked routine to factorize k blocks of b columns (called a

panel) simultaneously, where k = floor(n/b). The remaining n− kb columns that have

not been factorized are then handled sequentially using the unblocked routine. This

is a standard approach utilised in many LAPACK routines. The optimal block size b

is determined by calling the LAPACK function ILAENV [62]. This is a sophisticated

routine used for this purpose that generally performs well, although for optimal per-

formance it is recommended to adapt it to the particular machine on which it is being

run [56].

As ever in software development when existing code is being adapted for use in

a new routine, constraints and possibilities that had not previously been considered

arose from our use of DSYTRF RK to compute the indefinite factorization in F01MDF.
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Most of these were very minor (for example, the argument ipiv had to be an input

and an output rather than just an output to ensure compatibility with the LAPACK

code). However, the most notable possibility that arose concerned another, related

factorization of the matrix.

If uplo == U, then DSYTRF RK computes not PAP T = LDLT but PAP T = UD̃UT ,

where U is unit upper triangular. This is also true for the DSYTRF routine (which uses

partial, instead of rook, pivoting). As previously noted, this U is not just the transpose

of L but it is closely related: if we have the modified Cholesky factorization PAP T =

LDLT and Π is the permutation matrix that reverses rows by pre-multiplication, then

we also have

ΠTPAP TΠ = ΠTLDLTΠ

= (ΠTLΠ)(ΠTDΠ)(ΠTLTΠ)

= U(ΠTDΠ)UT

= UD̃UT ,

where U is upper triangular and D̃ is block diagonal.

We have not considered this factorization thus far for the simple reason that it

would not be called a Cholesky factorization. However, the vast majority of the

analysis from section 3.1.2 still applies, but with U instead of L (and D̃ instead of

D). It may not technically be a modified Cholesky factorization, but can be used for

almost all the same purposes. Precisely why this option was included in the LAPACK

code is unclear, although we believe it may be to avoid awkward permutations. Since

we wish to make use of the LAPACK routine and it is very much possible that the

user has stored the upper triangular part of the symmetric matrix anyway, rather than

the lower, it was reasonable for us to include this option for F01MDF as well.

5.2.4 Making the perturbations

Once we compute the indefinite factorization, perturbing the factors to form the mod-

ified Cholesky factorization is very simple, so will not be described in any depth here.

We essentially just follow the description given in section 3.1.2 and iterate over the

blocks of D, modifying them when necessary. There are some practical complications

because the elements of D are stored in two separate locations rather than a single
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matrix but the code is still both short and simple. When we encounter a 2× 2 block,

we explicitly construct it as an 2× 2 array and then use the LAPACK routine DSYEVD

[58] to determine its eigenvalues and eigenvectors. These are then used to compute

the entries of the perturbed block and the elements of D are overwritten accordingly.

It is important to note that the F01MDF routine does not currently use any parallel

code at this stage, although the method is very well-suited to parallel computing, as

the modifications to the blocks of D are all independent of one another. However, it is

intended that the code will be parallelized before its release with the Mark 27 version

of the NAG Library.



Chapter 6

Testing the F01MDF Routine

To test our new F01MDF routine, we ran a series of numerical experiments. Note

that this experimentation is distinct from the more extensive suite of testing that all

routines must undergo before inclusion in the NAG Library, which should take place

later this year, after the submission of this dissertation. The focus of that testing may

also be slightly different than ours, placing more of an emphasis on software engineer-

ing concerns like erroneous user input, whereas we will focus on more mathematical

aspects.

Fundamentally, we want to make sure that our routine matches the theoretical

expectations of the Cheng-Higham algorithm as detailed in section 3.1.2. We are also

of course in a sense looking for things that we do not expect: this is the best way to

find any unforeseen problems or difficulties that may occur. Note that this dissertation

will be referenced in the documentation for the F01MDF routine when it is eventually

released with the NAG Library so testing also serves the further purpose of generating

a body of data that may inform decisions made by future users of the routine. Our

numerical experiments may for example suggest that the F01MDF routine generally

obeys tighter bounds in practice than the theoretical ones established in Chapter 3,

which would be eminently useful for users.

Our testing in this chapter focuses on those aspects of the routine that will be of

most interest to users. First and foremost, they will want to know that the routine is

accurate; this is the focus of section 6.2. They will want to know when it will perform

well and when it will not; to this end, we consider how the size of the perturbation

matrix E and the conditioning of A + E differ for a very wide range of matrices in

68
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sections 6.3 and 6.4 respectively. Information regarding the efficiency of the routine

will surely also be useful and therefore in section 6.5, we investigate whether matrices

that requireO(n3) comparisons for the rook pivoting are as rare as the analysis suggests

and also compare the efficiency of F01MDF to that of an existing NAG Library routine.

All testing in this chapter was done in the computing environment described in

section 1.4, using a single computational core. We expect the results in sections 6.2–

6.4 to be very similar once the routine is parallelized, as that should have no effect

on the properties being considered. However results in section 6.5 concerning function

timings are likely to differ when the computations are performed in parallel; this will

be emphasised again before any such results are presented. The F01MDF routine was

always run with uplo == ’L’ and delta == sqrt(eps) * norm(A, ’fro’). Note

that the MATLAB parameter eps is actually twice the unit roundoff u and the norm

of A that we used was the Frobenius norm so this value of delta differs from that

suggested for δ by Cheng and Higham in [12]. However, we found that this was

generally a good value for δ in practice.

6.1 Test matrices

Ultimately, we want to perform our numerical experiments with matrices similar to

those that the F01MDF routine may actually be used for in applications. To this end,

it is important that we consider as wide a range of matrices as possible, with different

eigenvalue distributions and dimensions: it could be that certain kinds of matrices are

more likely to occur in a particular application than others and the user may therefore

wish to know how the routine performs for those only. In section 6.1.1 we describe

the method that was used for generating random matrices used in our experiments

throughout this chapter and in section 6.1.2 we describe one set of matrices from

real-world applications that were also considered.

6.1.1 Generating random matrices

In order to create random matrices for our numerical experiments, we follow the lead

of Cheng and Higham in [12] and use matrices of the form A = QΛQT , where Q is a
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random orthogonal matrix generated using the qmult function from the Matrix Com-

putation Toolbox [32] and Λ = diag(λi), with the λi from a chosen random uniform

distribution. This method of construction is preferred because we can easily con-

trol the eigenvalues of A by specifying the range of the random uniform distribution.

Throughout this chapter, when we refer to “random” matrices we will mean matrices

constructed in the preceding manner.

6.1.2 Matrices from applications

With the application of finding the distance to the nearest correlation matrix described

in Chapter 7 in mind, we consider the set of 13 invalid correlation matrices from real-

world applications provided at this GitHub repository by Higham and Strabić [41].

The definition of a correlation matrix—and how an invalid one may arise—will be

explained in Chapter 7 but here it suffices to say that these matrices are all symmetric

with unit diagonal and also indefinite. They differ quite widely in order, from 3 to 3250.

A full description of each matrix can be found in the readme file at the repository.

Note that these matrices may not be typical of those that occur in other applica-

tions. In particular, they generally have relatively few negative eigenvalues and these

tend to be much smaller in magnitude than the largest positive eigenvalues. Most

(although not all) also have all of their elements bounded above by one.

6.2 Accuracy

The important theoretical result with regards to the accuracy of the Cheng-Higham

modified Cholesky algorithm is the bound (3.1), so that will inform the discussion in

this section. We can calculate ‖A+ E‖2 so the only unknown on the right-hand side

of (3.1) is the small function of n, cn. In this section, we investigate if we can make

some rough estimate of its size, or at least find an approximate upper bound for it.

This will allow us to gauge how accurate the routine generally is in practice.

The difficulty is that in general we cannot precisely predict the size of E a priori:

we have the upper bound (3.3) but that is all. So for an indefinite matrix we can’t

effectively distinguish between the perturbation matrix E and the error matrix F .

What we can do however is test known positive definite matrices. Mathematically,
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Figure 6.1: Measures of the error matrix F for 100 random matrices of order n = 100,
with eigenvalues in [1, 104] and maximum eigenvalue fixed as 104.

we know that in this case the algorithm returns E = 0, so the bound on F becomes

‖F‖2 ≤ cnu ‖A‖2 = cnuλmax(A).

Figure 6.1a plots the 2-norm of F for each of 100 random positive definite matrices

of order n = 100 with eigenvalues in the range [1, 104] and largest eigenvalue fixed as

104. We also plot the line y = nu ‖A‖2 for comparison. Figure 6.1b explicitly shows

the ratio ‖F‖2 /nu ‖A‖2 for these matrices. We see that ‖F‖2 is generally only a small

fraction of nu ‖A‖2.

Figures 6.2a and 6.2b show the results when we repeat the previous experiments

but with matrices of order n = 10. In this case we can see that the ratio ‖F‖2 /nu ‖A‖2
is larger than before but still appears to be bounded above by a small fraction (ap-

proximately 0.4) of n. The relative bounds observed for the two different values of n

also suggests that cn is not just a simple linear function of n.

Figures 6.3a and 6.3b plot the ratio for 100 random matrices of order 10 when we

increase the maximum eigenvalue by two and eight orders of magnitude, respectively;

this loosens the bound on ‖F‖2 correspondingly. Note that although the absolute

size of the errors is larger than we have previously seen, the ratio ‖F‖2 /nu ‖A‖2 still

appears to be bounded above by about 0.4.

Alternatively, Figures 6.4a and 6.4b are the result of keeping the maximum eigen-

value fixed as 104 but increasing the dimension of the matrix to n = 500 and n = 1000

respectively. We observe the same behaviour as in previous experiments with regards

to the ratio ‖F‖2 /nu ‖A‖2.



72 CHAPTER 6. TESTING

0 20 40 60 80 100

Matrix

10 -13

10 -12

10 -11

10 -10

||F||
n*u*||A||

(a) Norm of F

0 20 40 60 80 100

Matrix

0.05

0.1

0.15

0.2

0.25

0.3

0.35

||F
|| 

/ (
n 

* 
u 

* 
||A

||)

(b) Ratio ‖F‖2 /nu ‖A‖2

Figure 6.2: Measures of the error matrix F for 100 random matrices of order n = 10,
with eigenvalues in [1, 104], and maximum eigenvalue fixed as 104.

0 20 40 60 80 100

Matrix

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

||F
|| 

/ (
n 

* 
u 

* 
||A

||)

(a) k = 6

0 20 40 60 80 100

Matrix

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

||F
|| 

/ (
n 

* 
u 

* 
||A

||)

(b) k = 12

Figure 6.3: The ratio ‖F‖2 /nu ‖A‖2 for 100 random matrices of order n = 10 with
eigenvalues in [1, 10k] and maximum eigenvalue fixed as 10k.
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Figure 6.4: The ratio ‖F‖2 /nu ‖A‖2 for 20 random matrices of order n with eigenvalues
in [1, 104] and maximum eigenvalue fixed as 104.

To sum up, our experiments suggest that the error in using the F01MDF routine

is perhaps bounded above by about 0.4nu ‖A‖2 in practice, although much more ex-

periments would be required before concluding this is generally the case. Certainly,

throughout all of our testing, we never observed a matrix for which the error exceeded

this bound. Further evidence in support of this (or any other) de facto bound would

allow us to speak with greater confidence about the size of E when the matrix is ac-

tually perturbed by the routine (i.e., A is indefinite), particularly if we also have any

information about the maximum eigenvalue of A.

6.3 Measuring the perturbation

In this section, we establish some results for the size of the perturbation matrix E

produced by the F01MDF routine. For random marices, we emulate the approach of

Schnabel and Eskow and Cheng and Higham in considering matrices with three dif-

ferent eigensystems: negative definite, indefinite and “slightly” indefinite (i.e., with

only a few, relatively small, negative eigenvalues). We distinguish the last grouping

from other indefinite matrices because they are particularly common in certain applic-

ations (for example, that detailed in Chapter 7). We also consider the set of 13 invalid

correlation matrices from Higham and Strabić described in section 6.1.2.

To evaluate the performance of the F01MDF routine, we make use of the ratios r2

and rF defined in (4.2), as these are the natural way to measure success here. The
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Figure 6.5: The ratios r2 and rF plotted for 100 random matrices of order n with
eigenvalues in [−104,−1] and minimum eigenvalue fixed as −104.

practical value of the bound (3.3) will also be considered for the invalid correlation

matrices in particular. We perform little comparative testing in this section as we are

mostly interested in establishing base results for future users of the routine, but we

will comment on the results obtained.

6.3.1 Negative definite random matrices

Figures 6.5a and 6.5b show the ratios rF and r2 for 100 random matrices with eigen-

values in the range [−104,−1] (i.e., negative definite), of order n = 25 and n = 100

respectively. In both cases, we fixed the minimum eigenvalue of all the matrices at

−104 in order to ensure that each had the same upper bound on the error (see section

6.2).

We see that our results support the analysis from section 4.1.2 and the previous

results obtained by Cheng and Higham and Fang and O’Leary: the perturbation

matrix E is usually very nearly optimal when A is negative definite. Hence we expect

the routine to perform particularly well in this regard for applications in which negative

definite matrices may occur.

6.3.2 Indefinite random matrices

In this section we consider only those matrices with an fairly even mix of positive and

negative eigenvalues, of similar magnitudes; “slightly” indefinite matrices with only a
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Figure 6.6: The ratios r2 and rF plotted for 100 random matrices of order n with
eigenvalues in [−1, 1].

few small negative eigenvalues are considered in section 6.3.3.

We first considered random matrices with eigenvalues in the range [−1, 1]. Note

that we did not fix the largest eigenvalue as in the previous section. Figures 6.6a and

6.6b show the size of the perturbation matrix E produced for 100 random matrices

of order n = 25 and n = 100, respectively. Figures 6.7a and 6.7b display the results

when we repeat the experiment for random matrices with eigenvalues in the range

[−104, 104]. We see that altering the eigenvalue range has no appreciable effect on the

size of the perturbation matrix produced.

The ratios r2 and rF appear to generally be bounded above by about n/2, where

n is the order of the matrix, and rF in particular is usually considerably smaller.

However, further testing would be required to establish whether this is in fact typical.

6.3.3 Slightly indefinite random matrices

Matrices with a relatively small number of negative eigenvalues are likely to occur in

many applications. Indeed, there are situations in which the user may not even be

aware that the matrix they have is not positive definite (an application in which this

can often occur is discussed in Chapter 7). Hence we devote special attention to this

type of indefinite matrix in this section.

In Figures 6.8a and 6.8b we show the ratios rF and r2 for 100 random matrices

of order n = 25 and n = 100, respectively, with eigenvalues in the range [−1, 104].
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Figure 6.7: The ratios r2 and rF plotted for 100 random matrices of order n with
eigenvalues in [−104, 104].
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Figure 6.8: The ratios r2 and rF plotted for 100 random matrices of order n with
eigenvalues in [−1, 104] and at least one negative eigenvalue.

Note that we ensured that at least one eigenvalue was negative and therefore the

matrix was truly indefinite. We observe that both ratios are considerably higher than

the corresponding results achieved in section 6.3.2, by as much as three orders of

magnitude in the worst case. We also see that, unlike in the previous section, the two

ratios are effectively indistinguishable.

We next considered the effect of varying the number of negative eigenvalues of

the input matrix. Figures 6.9a–6.9d show the effect that increasing the number of

negative eigenvalues has on the ratios rF and r2, for 100 random matrices of order

n = 100 and eigenvalues in the range [−1, 104]. Other than the difference between
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Figure 6.9: The ratios r2 and rF for 100 random matrices of order n = 100 and
eigenvalues in [−1, 104], for differing numbers of negative eigenvalues.

rF and r2 increasing with the number of eigenvalues, we observe few other differences

between the plots. Mathematically, there is no reason to assume that there would

be but we considered this to still be worth establishing, particularly since it was an

investigation of this kind that led Schnabel and Eskow to discover the matrices that

created difficulties for their original algorithm [70].

6.3.4 Correlation matrix data set

Table 6.1 records the ratios rF and r2 for the invalid correlation matrices from Higham

and Strabić, as well as the norm of the perturbation matrix E itself and the bound

(3.3). We observe roughly the same behaviour with regards to the ratios rF and r2

that we have already remarked upon in previous sections. We also see that although
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Table 6.1: Measures of the perturbation matrix E computed for 13 invalid correlation
matrices, with the upper bound (3.3) included for comparison.

Matrix Order r2 rF ‖E‖2 Bound (3.3)
bccd16 3250 5.68e1 5.07e1 1.56e3 2.72e7
beyu11 12 5.09 5.09 4.43e-2 1.09
bhwi01 5 4.40 4.40 5.61e-1 4.94
cor1399 1399 4.70 3.65 3.97e1 5.54e7
cor3120 3120 1.24e3 6.41e2 8.89e2 1.95e8
fing97 7 2.08 2.08 7.94e-2 8.69e-1
high02 3 2.41 2.41 1 5.77
mmb13 6 1.05 1.05 2.26e1 4.88e3
tec03 4 4.17 4.17 1.15e-1 7.57e-1

tyda99r1 8 4.28 3.83 4.33 6.82e1
tyda99r2 8 3.55 3.51 2.02 3.98e1
tyda99r3 8 4.49 4.13 2.25 3.20e1
usgs13 94 5.49e1 5.11e1 2.55 3.71e2

the norm of the perturbation matrix is always within the bound (3.3), the bound itself

may not be accurate enough to be practical, often being fairly tight but also being six

orders of magnitude too large in the worst case examples of cor1399 and cor3120.

6.4 Conditioning of the perturbed matrix

As in the previous section, our primary objective here is simply to obtain a body of

data to act as a reference for future users of the F01MDF routine, although we will

also remark on interesting or unexpected results. To that end, we investigated the

conditioning of the perturbed matrix A+E for the three different varieties of matrices

considered in section 6.3 (i.e., negative definite, indefinite and “slightly” indefinite),

as well as the set of invalid correlation matrices of Higham and Strabić.

6.4.1 Random matrices

Figures 6.10a–6.10f plot the condition number of the perturbed matrix A+E against

the condition number of the original matrixA for 100 random matrices with eigenvalues

in each of the ranges [−104,−1], [−1, 1] and [−1, 104], and of orders n = 25 or n = 100.

We see that the two are very close in the negative definite case but otherwise the

condition number of A + E is considerably higher than the condition number of the
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original matrix A. We further investigate the relationship between the two in Figures

6.11a–6.11d, with the results suggesting that there is little to no relationship between

the conditioning of the indefinite matrix A and the perturbed matrix A+E, which is

in fact entirely what we would expect given the nature of the bound (3.4).

Figures 6.12a and 6.12b show the effect of changing the variable delta (which

represents the tolerance level δ) used in the F01MDF routine. We see that, unlike the

conditioning of A, this does seem to have an effect on the conditioning of A + E,

with the condition number generally decreasing by about an order of magnitude as

delta increases correspondingly. Again, this is entirely to be expected. As described

in section 3.1.2, the Cheng-Higham algorithm attempts to ensure that the minimum

eigenvalue of the perturbed matrix is approximately δ and, as changing δ has no effect

on the maximum eigenvalue, we would therefore expect the condition number of the

perturbed matrix to decrease as δ increases, in an approximately linear fashion.

6.4.2 Correlation matrix data set

Table 6.2 records the condition numbers of the 13 invalid correlation matrices in the

set provided by Higham and Strabić, as well as the condition number of the perturbed

matrix A+ E produced by the F01MDF routine and the upper bound (3.4). We again

observe that κ2(A) has little to no effect on κ2(A+E). The practicality of the upper

bound is unclear: it is often within one or two orders of magnitude of the true condition

number of A + E, but in the worst case example (cor3120) it is eight orders of

magnitude too large.

6.5 Efficiency

The major concern with the Cheng-Higham modified Cholesky algorithm in this regard

is the possibility that O(n3) comparisons may be required for the rook pivoting strategy

used to compute the indefinite factorization, so in section 6.5.1 we investigate how

likely such matrices are to occur in practice. In section 6.5.2 we then compare the

efficiency of the F01MDF routine with the existing NAG Library routine for standard

Cholesky factorization of a positive definite matrix.

We reiterate here that as the routine is not yet parallelized, we restricted ourselves
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Figure 6.10: Condition numbers κ2(A) and κ2(A + E) for random matrices of differ-
ent degrees of definiteness. Here, “negative definite” means eigenvalues in the range
[−104,−1], “indefinite” [−1, 1] and “slightly indefinite” [−1, 104].
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Figure 6.11: κ2(A) and κ2(A + E) for 100 random matrices of order n = 100 with
eigenvalues in [−1, 104] and κ2(A) fixed at 10k, for different values of k.
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Figure 6.12: κ2(A) and κ2(A + E) for 100 random matrices of order n = 100, with
eigenvalues in the range [−1, 104], for two different values of delta.
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Table 6.2: Condition number for 13 invalid correlation matrices.

Matrix Order κ2(A) κ2(A+ E) Bound (3.4)
bccd16 3250 4.10e3 1.48e10 1.80e16
beyu11 12 7.39e2 3.17e8 1.26e11
bhwi01 5 2.34e1 3.78e8 1.80e10
cor1399 1399 3.65e19 2.38e11 1.55e18
cor3120 3120 5.45e5 1.01e13 1.38e21
fing97 7 9.36e1 1.41e8 6.54e9
high02 3 5.83 2.28e8 3.18e9
mmb13 6 1.45e17 2.17e8 4.78e9
tec03 4 1.05e2 2.84e8 9.77e9

tyda99r1 8 1.26e1 3.98e8 2.32e10
tyda99r2 8 1.98e1 4.27e8 4.54e10
tyda99r3 8 1.51e1 4.08e8 2.99e10
usgs13 94 1.17e3 1.04e10 1.20e14

to a serial environment and performed all calculations on a single computational core.

Once parallel code has been incorporated, this testing should ideally be repeated. As

the routine is so well-suited to parallel computing, we do not expect the comparative

results presented in section 6.5.2 to differ appreciably.

6.5.1 Rook pivoting

Making the modified Cholesky perturbations to the block diagonal matrix D is an

O(n) operation so the bulk of the cost of F01MDF comes from computing the indefinite

factorization. As described in section 5.2.3, this is done with the LAPACK routine

DSYTRF RK. All of the pivoting is also done by that routine so in principle we could

simply test the efficiency of that rather than F01MDF, but we believe it is wise to

consider the routine as a whole in case there are any unforeseen problems elsewhere.

Higham in [36, p. 228] provides MATLAB code for generating matrices of an input

order n that require O(n3) comparisons for the rook pivoting and we adapted this as

the expensive matrix function included in Appendix E. Figures 6.13a, 6.13b, 6.14a

and 6.14b show the time taken for the F01MDF routine for random matrices of order

n = 10 or n = 100 with eigenvalues in the ranges [−1, 104] or [−1, 1]; negative definite

matrices with eigenvalues in [−104,−1] were very similar to the former. Also included

in each figure is the average time taken for 10 tests of the F01MDF routine for a matrix
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of the same order generated using the expensive matrix function.

For the matrices with eigenvalues in [−1, 104], the time taken for the known ex-

pensive matrix was always considerably higher than for random matrices of the same

dimension and this was true for the random matrices with eigenvalues in [−1, 1] of

order n = 100 as well. For those matrices with eigenvalues in the latter range and of

order n = 10, the timings were closer. The code used to generate the figures was run

several times to ensure that the results were consistent and we include Figure 6.14a as

that was a typical example for matrices of that type, but Figure 6.15 was the output

of another iteration of the generating code.

We see from Figure 6.15 that for one of the random matrices, the time taken ex-

ceeds that of the known expensive matrix. This was the only matrix in our testing for

which this was the case, although it can also be seen from Figure 6.15 that there was

another matrix in that set that came fairly close. As the matrices used to generate

the figures were not stored in this case, we were unable to confirm that the matrix

which did exceed the time taken for the known expensive matrix also required O(n3)

comparisons. However even if it did, the time taken should have only been approx-

imately the same, when in fact it was almost double. This suggests that the problem

lies elsewhere in the routine. However, since this was only observed for one matrix

amongst approximately 1400 (of that order) tested overall and was not apparent in

our later attempts to duplicate the result, we suspect the issue may be a glitch due

to our computing environment. We do however believe it should be noted as it may

be wise to pursue this as an avenue of investigation if any future users report similar

issues. Note also that for larger matrices with eigenvalues in the same range, every

iteration of the generating code produced a plot very similar to Figure 6.14b.

Table 6.3 records the results when we repeat the experiments for the invalid cor-

relation matrices from Higham and Strabić. They largely concur with our findings for

random matrices. Note that again we see that the disparity between the two timings

is most pronounced for the largest matrices, with F01MDF being 270 times faster for

bccd16 than a matrix of the same order (3250) that requires O(n3) comparisons for

the pivoting.
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Figure 6.13: Timings for F01MDF for 100 random matrices of order n with eigenvalues
in [−1, 104]. The time taken for a known expensive matrix of the same order is included
for comparison.
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Figure 6.14: Timings for F01MDF for 100 random matrices of order n with eigenvalues
in [−1, 1], with the time taken for a known expensive matrix of the same order included
for comparison.
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Figure 6.15: Timings for F01MDF for 100 random matrices of order n = 10 with
eigenvalues in [−1, 1]. This plot is the output of the only one of 14 iterations of the
generating code for which the time taken for a random matrix exceeded the known
expensive matrix.

Table 6.3: Timings for F01MDF for 13 invalid correlation matrices (ICMs) and a known
expensive matrix (KEM) of the same order, with the ratio between the two included
for clarity.

Matrix Order Time (seconds) KEM Time (seconds) KEM/ICM
bccd16 3250 7.88e-1 2.13e2 270.3
beyu11 12 3.14e-5 6.56e-4 20.9
bhwi01 5 2.43e-5 4.80e-5 1.98
cor1399 1399 9.38e-2 1.49e1 158.8
cor3120 3120 8.09e-1 1.85e2 228.7
fing97 7 2.23e-5 9.10e-5 4.08
high02 3 1.19e-5 4.40e-5 3.70
mmb13 6 1.68e-5 3.66e-5 2.18
tec03 4 1.87e-5 3.31e-5 1.77

tyda99r1 8 1.93e-5 3.54e-5 1.83
tyda99r2 8 2.02e-5 3.88e-5 1.92
tyda99r3 8 2.09e-5 3.51e-5 1.68
usgs13 94 1.68e-4 3.04e-3 18.1
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Figure 6.16: Timings for F01MDF for 30 random matrices (of order n = 1000 with
eigenvalues in [−1, 104]) and F07FD for 30 random positive definite matrices of the
same order.

6.5.2 Comparison with the standard Cholesky factorization

One of the primary objectives for any modified Cholesky algorithm is that it should not

be significantly more expensive than the standard Cholesky factorization. To consider

this for the F01MDF routine, we made use of the NAG Toolbox for MATLAB routine

F07FD [52] which computes the standard Cholesky factorization of a positive definite

matrix. Figure 6.16 shows the time taken for the F01MDF routine for 30 random

indefinite matrices of order n = 1000 with eigenvalues in [−1, 104]; other indefinite

eigenvalue ranges produced similar results. Also shown is the time that the F07FD

routine takes to factorize a positive definite matrix of the same order. We see that

on average F01MDF is about 30% more expensive than F07FD, which translates to

roughly 0.06 seconds in runtime. Given that the modified Cholesky factorization has

an additional cost beyond that of the standard Cholesky factorization of O(n2) flops

and n2 = 106 in this case, we consider this to be reasonable.



Chapter 7

Bounds on the Distance to the

Nearest Correlation Matrix

7.1 The nearest correlation matrix problem

In statistical modelling, a correlation matrix is often constructed to express the cor-

relation coefficients between a set of two or more random variables, where the (i, j)

entry of the matrix is the correlation coefficient between the variables xi and xj. It

is clear that such a matrix must be symmetric with unit diagonal; it is also positive

semidefinite, although this is not as immediately obvious [72, p. 24–25]. The ubiquity

of correlation matrices in statistical modelling is such that the name has been adopted

in linear algebra to describe any real symmetric positive semidefinite matrix.

In many applications, a matrix intended to represent the correlation coefficients

between a set of variables which should therefore be a correlation matrix in fact isn’t,

most often because it is not actually positive semidefinite. There are many possible

ways this may happen but it is normally because of missing sample data being extra-

polated or matrix entries being replaced, for reasons that may be either necessary or

unavoidable. A specific example of a situation in which this can occur is stress testing

in finance, which often requires overwriting the elements of a matrix representing the

correlation between various stocks. Several more examples are listed in [37] and [40].

In such a situation, we often want to find the nearest correlation matrix to the one

we actually have, to act as the “true” matrix in further computations. This has long

been of interest in certain areas, particularly in the finance industry. Algorithms for

87
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computing the nearest correlation matrix exist and the NAG Library contains several

routines that implement many of them. Unfortunately, even the best of the algorithms

is still fairly expensive: for a matrix of order n, computing the nearest correlation

matrix costs at least 70n3/3 flops using the most efficient method currently available

[40].

Given the relatively high cost of actually computing the nearest correlation matrix

to a given matrix, it would be useful to know the actual distance a priori, or at least

good bounds for it. This could help inform the decision of whether or not it is necessary

to revisit the construction of the matrix, or if the current matrix will suffice for certain

applications.

For a matrix A, we define the distance to the nearest correlation matrix ANCM by

dcorr(A) = ‖A− ANCM‖F .

Finding upper and lower bounds for dcorr(A) without finding ANCM itself has attracted

relatively little interest, however Higham and Strabić catalogue all of the known bounds

and derive several new ones in [40]. In particular, they show how an upper bound on

dcorr can be constructed using the modified Cholesky factorization.

7.2 Computing an upper bound with the modified

Cholesky factorization

Suppose A ∈ Rn×n is a symmetric, possibly indefinite matrix, with positive diagonal

elements. Compute a modified Cholesky factorization of A,

A+ E = P TLDLTP,

and let Λ = diag(A+ E). Then

dcorr(A) ≤
∥∥A− Λ−1/2(A+ E)Λ−1/2

∥∥
F
. (7.1)

No proof is given here, but the basic idea is simple: the perturbed matrix A + E

produced by the modified Cholesky factorization is symmetric positive semidefinite,

so by scaling to ensure it retains those properties whilst also having unit diagonal, we
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can construct a correlation matrix that is (hopefully) close enough to A to act as a

useful upper bound on the distance to the nearest correlation matrix.

The restriction that A must have positive diagonal elements is unlikely to be a

hindrance in practice, since in this application we are generally considering matrices

that are correlation matrices in every aspect apart from their definiteness, so we expect

them to have unit diagonal.

For the Cheng-Higham and Moré-Sorensen modified Cholesky algorithms, the cost

of computing the bound (7.1) is 2n3/3 flops, including the step of forming A + E

explicitly, which requires at least one dense matrix multiplication. This cost would

therefore be smaller for modified Cholesky algorithms such as the SE or GMW that

return E explicitly. Higham and Strabić compared the accuracy of the bound com-

puted for the GMW, SE90, SE99 and CH algorithms on a set of invalid correlation

matrices and concluded that the CH algorithm was generally more accurate than the

others. We perform similar experiments in section 7.4 that suggest the CH algorithm

is consistently more accurate than the MS algorithm as well. The precise reason for

the difference in performance between the algorithms is unclear, however.

In their numerical experiments, Higham and Strabić found that bound (7.1) was

generally within at most two orders of magnitude of dcorr(A) and suggest that this will

usually be adequate for practical applications.

7.3 Other bounds

7.3.1 Upper bounds

Two other methods for computing upper bounds for dcorr were found to be useful by

Higham and Strabić. Both are based on spectral information, although they have

different costs. The first is based on the idea of shrinking from Higham, Strabić and

Šego [42], and is defined by the following theorem.

Theorem 7.1 Let A ∈ Rn×n be symmetric with unit diagonal and smallest eigenvalue

λn < 0. Then

dcorr(A) ≤ |λn|
1 + |λn|

‖A− I‖F . (7.2)
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The cost of computing the bound (7.2) is 4n3/3 flops, twice that of the bound (7.1)

computed using the modified Cholesky factorization. In their numerical experiments,

Higham and Strabić found that the accuracy of both bounds was generally very similar.

The other upper bound Higham and Strabić found to be useful requires the nearest

symmetric positive semidefinite matrix to A in the Frobenius norm, usually denoted

A+. From, for example, Theorem 3.1, we can see that if A has the spectral decompos-

ition A = QΛQT , where Q is orthogonal and Λ = diag(λi), then A+ can be explicitly

computed by

A+ = Qdiag(max(λi, 0))QT . (7.3)

We can now state the following theorem which gives another bound on dcorr(A).

Theorem 7.2 Let A ∈ Rn×n be symmetric with positive diagonal elements. Then

dcorr(A) ≤
∥∥∥A− Ã+

∥∥∥
F
, (7.4)

where Ã+ = D−1/2A+D
−1/2, with D = diag((A+)ii).

No proof is given here but one can be found in [40]. Higham and Strabić found this

to generally be the most accurate of the upper bounds they considered, always being

within a factor of 4 of dcorr for all the matrices in their test set. However, the cost of

calculating bound (7.4) is 17n3/3 flops, significantly more expensive than the upper

bound obtained using the modified Cholesky factorization (or indeed shrinking).

7.3.2 Lower bounds

Three lower bounds for dcorr(A) are given by Higham and Strabić in [40], however they

conclude that only one of these is accurate enough to be of any practical use. Let A+

be defined as in (7.3). Then we have

‖A− A+‖F ≤ dcorr(A). (7.5)

Note that, in particular, we also have

‖A− A+‖F =

(∑
λi<0

λ2i

)
. (7.6)

The cost of computing (7.5) using (7.6) is 4n3/3 flops. Higham and Strabić found that

the bound (7.5) was always within a factor of 2.4 of dcorr for all the matrices in their

test set.
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7.4 Using the new implementation

To analyse the performance of the new F01MDF routine at computing the bound (7.1)

and its relative efficiency compared to actually finding the nearest correlation matrix,

we considered the set of 13 invalid correlation matrices from Higham and Strabić that

we also made use of in Chapter 6; full details can be found at [41].

All experiments in this section were performed in the computing environment de-

scribed in section 1.4, on a single core. As noted in Chapter 5, the F01MDF routine

does not currently incorporate any parallel code, so we have restricted ourselves to a

serial environment here. However, it is intended that the routine will be parallelized

in the immediate future. Once this is done, we expect to see broadly similar results

to those described here, although this should be investigated when possible.

To compute the bound (7.1), we first used the F01MDF routine to find the modified

Cholesky factorization of the input matrix and then processed the outputs to compute

the perturbed matrix A+E and calculate the bound (7.1). The second step was done

using the MATLAB function ncm upper, included in Appendix E. As it is not currently

intended for this code to be incorporated into the NAG Library, we view it as simply

proof-of-concept: efforts were made to make it relatively efficient but it can surely

still be optimized. As with F01MDF, ncm upper also does not currently incorporate

any parallel code. For all experiments utilising the F01MDF routine, we set delta ==

sqrt(eps) * norm(A, ’fro’) and uplo == ’L’.

Table 7.1 records the computed bound (7.1) for each of the matrices in the set

using both the Cheng-Higham and Moré-Sorensen modified Cholesky algorithms. We

follow the convention of Higham and Strabić in denoting these by ‖A− CH‖F and

‖A−MS‖F respectively. The latter bound was computed using the MATLAB func-

tion more sorensen—which implements the Moré-Sorensen modified Cholesky al-

gorithm (see Appendix E)—run using the tolerance delta == eps.

Also included in Table 7.1 for comparison is the true distance to the nearest correl-

ation matrix dcorr(A). This was computed by using the NAG Toolbox for MATLAB

routine G02AA [53], run with default parameters, to actually find the nearest correl-

ation matrix. This routine is very well regarded and implements the most efficient

algorithm currently known for computing the nearest correlation matrix to an input
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Table 7.1: Bounds computed using the Cheng-Higham and Moré-Sorensen algorithms
and the actual values of dcorr(A) for 13 invalid correlation matrices.

Matrix Order ‖A−MS‖F ‖A− CH‖F dcorr(A)
bccd16 3250 9.19e2 6.91e2 2.91e1
beyu11 12 1.21e-1 6.21e-2 9.60e-3
bhwi01 5 7.11e-1 4.30e-1 1.51e-1
cor1399 1399 7.37e1 4.52e1 2.10e1
cor3120 3120 5.25e2 4.40e2 5.44
fing97 7 1.76e-1 9.24e-2 4.91e-2
high02 3 8.45e-1 5.86e-1 5.28e-1
mmb13 6 3.27e1 3.04e1 3.03e1
tec03 4 9.94e-2 5.19e-2 3.74e-2

tyda99r1 8 3.17 2.36 1.40
tyda99r2 8 2.59 1.71 7.75e-1
tyda99r3 8 1.55 1.09 6.72e-1
usgs13 94 2.97 1.92 5.51e-2

matrix.

We see from Table 7.1 that the CH algorithm consistently achieves a more accurate

bound than the MS algorithm for the matrices in our test set. We also observe that

the bound (7.1) is always within at most two orders of magnitude of dcorr and usually

tighter than this.

In Table 7.2, we give the average timings over 5 tests for F01MDF, ncm upper and

G02AA. We see that the bulk of the time taken for the ncm upper function is spent ac-

tually constructing A+E, rather than computing the modified Cholesky factorization

using the F01MDF routine. With the exception of tec03, ncm upper is always faster

than G02AA, and this is much more pronounced for the largest matrices. Table 7.3

displays the relative efficiency of the three functions for the three largest matrices in

the set. We see that ncm upper is between about 12 and 17 times as fast as G02AA for

these matrices. Of course, unless computing the bound is considerably cheaper than

actually computing the nearest correlation matrix, it is not worthwhile, so the open

question is whether this is efficient enough for most applications. We reiterate here

that ncm upper is intended largely as proof-of-concept code: we believe that it can

be optimized so that it is on average at least 25 times as efficient as G02AA for large

matrices.

When this project was first proposed, it was debated whether or not to include
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Table 7.2: Timings of three routines for 13 invalid correlation matrices.

Matrix Order F01MDF (seconds) ncm upper (seconds) G02AA (seconds)
bccd16 3250 0.90 4.52 54.72
beyu11 12 5.06e-4 1.54e-3 1.56e-3
bhwi01 5 5.73e-4 9.97e-4 1.92e-3
cor1399 1399 0.17 0.64 9.93
cor3120 3120 1.05 4.80 82.41
fing97 7 3.48e-4 9.07e-4 2.28e-3
high02 3 2.84e-4 7.89e-4 3.62e-3
mmb13 6 3.15e-4 1.10e-3 3.80e-3
tec03 4 9.94e-3 5.19e-2 3.74e-2

tyda99r1 8 7.05e-4 9.38e-4 2.56e-3
tyda99r2 8 4.26e-4 1.23e-3 1.40e-3
tyda99r3 8 4.89 e-4 9.32e-4 1.39e-3
usgs13 94 2.27e-3 5.78e-3 7.59e-3

Table 7.3: Efficiency of F01MDF and ncm upper relative to G02AA for the largest invalid
correlation matrices.

Matrix Order G02AA / F01MDF G02AA / ncm upper

bccd16 3250 60.8 12.1
cor1399 1399 58.4 15.5
cor3120 3120 78.5 17.1

another routine in the NAG Library that makes use of F01MDF to calculate the bound

(7.1) efficiently. This was dismissed because processing the output of F01MDF to com-

pute (7.1) was considered too simple to justify an entire routine. However, it may well

prove to be the case that users prefer an efficient black box routine for this rather than

having to write their own code. This decision should perhaps be re-evaluated after the

first release of the library including the F01MDF routine.



Chapter 8

Other Applications of the Modified

Cholesky Factorization

In this chapter we discuss applications of the modified Cholesky factorization other

than that discussed in the Chapter 7. We will be brief here but reference will be made

to other sources that provide much more in-depth information.

8.1 Finding directions of negative descent

This is often regarded as the primary application of modified Cholesky algorithms [21]

and motivated the creation of the algorithms of Gill, Murray and Wright [27], Schnabel

and Eskow [70], and Moré and Sorensen [47] discussed in Chapters 2 and 3.

Suppose we wish to minimize a function f(x), where x ∈ Rn. Then a common and

effective way to do this is to start at any given point x0 ∈ Rn and generate a series of

iterates xi such that f(xi) is a decreasing sequence (and therefore should eventually

converge to the minimum). One way to do this is to define successive iterates by

xi+1 = xi + αipi,

where αi is a constant known as the step length and pi ∈ Rn is a direction vector along

which the function f is decreasing1.

If Hf (xi) is the Hessian matrix of f(x) evaluated at xi and is positive definite, then

1The step length is of no further relevance for our discussion but is actually extremely important
in practice.
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we can always find such a pi by solving the system

Hf (xi)pi = −∇f(xi), (8.1)

where ∇f is the gradient of f . This is known as Newton’s method and, when it is

applicable, can be an extremely efficient way to minimize the function f(x), since it

converges to the minimum at a quadratic rate. Given that Hf (xi) is positive definite,

the most efficient way to solve the system (8.1) itself may be to use the Cholesky

factorization (see Chapter 1).

However, if the Hessian matrix Hf (xi) is not positive definite, then we obviously

cannot use a Cholesky factorization and, further, solving (8.1) does not even necessarily

give a descent direction [30]. The basic idea motivating the applications in this section

is that if we instead use the modified Cholesky factorization to find H̃f (xi) = Hf (xi) +

∆Hf (xi), where ∆Hf (xi) is chosen to make H̃f (xi) positive definite (i.e., it is E in our

notation from previous chapters), then if we solve

H̃f (xi)p̃i = −∇f(xi),

for p̃i, we may have a descent direction for f(x). Ensuring that it actually is a descent

direction is slightly more complicated than our simplified description suggests but can

nevertheless be done [47].

Many variants of Newton’s method exist and it is possible that the modified

Cholesky factorization may be applicable in some manner to many of them as well.

More broadly, the modified Cholesky factorization is useful in any other application

in which we wish to find a negative descent direction from an indefinite matrix, such

as interior-point algorithms for linear programming [76].

We will remark here that the use of modified Cholesky factorization in this context

does not appear to be as popular as it once was and other approaches such as trust

region methods [63, Chapter 4] or quasi-Newton [63, Chapter 6] methods that do

not require fixing the Hessian have become more prominent in recent years (although

there may still be situations in which they are unsuitable and the modified Cholesky

approach is preferred [4]). Of course, it could well be the case that this trend was in part

due to the dearth of software implementations of the modified Cholesky factorization

and that our routine may therefore lead to more interest in this approach.



96 CHAPTER 8. OTHER

8.2 Preconditioners

A preconditioner for a matrix A is another matrix Q chosen so that Q−1A is more

suitable for use in a numerical method than the original matrix A. For example, if

A is extremely ill conditioned, then rather than solving the linear system Ax = b, we

may choose a preconditioner Q such Q−1A is better conditioned than A and solve the

system Q−1Ax = Q−1b instead.

In certain applications, it can be the case that we need to construct a positive

definite preconditioner, or that a derived preconditioner is not positive definite when

it should be; there are many ways and contexts in which this can occur so we will

not describe them here but more information can be found at the references given.

The use of the modified Cholesky factorization to construct a preconditioner in a

Newton-like method for large-scale problems in computational chemistry is discussed

here [68]. More general use for large-scale optimization problems is considered here

[14]. Use as a preconditioner in a conjugate gradient method is discussed in [26] and

was implemented in the LANCELOT software package [13].

8.3 Other uses

A covariance matrix is very similar to a correlation matrix but differs in that the (i, j)

element of the matrix represents the covariance between the random variables xi and

xj, rather than the correlation [72, p. 24]. Use of the modified Cholesky factorization

to estimate the covariance matrix for a mixture of two normal distributions is proposed

here [74]. It is unclear to us however if the method is truly successful.

Schnabel and Eskow suggest that the ∞-norm of the perturbation matrix E pro-

duced by their modified Cholesky algorithm (or its later revision) could be used as

a low-cost way of estimating the smallest eigenvalue of A in trust region methods in

optimization [70]. However, we are uncertain whether it has ever actually been used

for this purpose in any applications.
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Concluding Remarks

Overall, we believe that the Cheng-Higham modified Cholesky algorithm was the right

choice for the NAG Library and that the F01MDF routine is an efficient implementation.

However, it should be regarded as imperative that the routine is parallelized before

it is included in any commercial release of the NAG Library, in order to better take

advantage of modern computer architectures.

For the the nearest correlation matrix problem discussed in Chapter 7 in particular,

time will tell whether using the F01MDF routine to compute an upper bound proves to be

both accurate and efficient enough to be of use in practical applications. The decision

of whether to include the calculation of the bound as an actual NAG Library routine

should also be re-evaluated pending user feedback after the first release incorporating

the F01MDF routine: it may well prove to be the case that users prefer to have a NAG

Library routine for doing this, to alleviate the need to create an efficient code of their

own.

The effect that incorporating Aasen’s LTLT factorization into the F01MDF routine

(as suggested by Fang and O’Leary and detailed in section 3.2) has on the accuracy

of the upper bound (7.1) should also be investigated, especially if NAG do ultimately

decide to include a routine that computes the bound in the library. We had concluded

that there was no advantage in doing this in general but—as noted in section 4.2—

using different modified Cholesky algorithms generally leads to different values for the

bound (7.1). As we are uncertain as to the precise cause of this behaviour, it is entirely

possible that the LTLT variant algorithm could improve the accuracy of the bound

(although it should also be emphasised here that there is also no reason to assume a
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priori that it actually will). If this does prove to be the case and NAG also decide to

create a new routine to compute the upper bound, then the possibility of incorporating

the LTLT factorization into the new routine should be considered.



Appendix A

Numerical Stability and Computer

Arithmetic

Suppose we have an an approximation ŷ to the true solution y of the problem y = f(x).

The forward error of an algorithm is the error (both absolute and relative) in using ŷ

to approximate y. The backward error is the ratio |∆x|/|x|, where ∆x is the smallest

perturbation we can make to x such that ŷ = f(x + ∆x). If we define an acceptably

small tolerance ε for the forward error and a similar acceptable tolerance η for the

backward error of a problem then an algorithm is numerically stable if a result of the

form

ŷ + ∆y = f(x+ ∆x), |∆y| ≤ ε|y|, |∆x| ≤ η|x|,

holds for all x. An algorithm is backward stable if the backward error of the solution ŷ

that it computes is bounded by one. In particular, a backward stable algorithm is also

numerically stable [36, p. 7]. Numerical stability is in general an extremely desirable

property for an algorithm to possess.

The most common way modern machines represent real numbers—and therefore

perform calculations with them—is through a floating point number system. However,

the machine can only accurately represent a small subset of the real numbers; these

are called floating point numbers. Each nonzero floating point number x̂ is of the form

x̂ = ±m× βe−t,

where m satisfying 0 ≤ m ≤ βt − 1 is called the mantissa, β is the base (almost

invariably 2), t is the precision and e is the exponent. The number system itself is
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characterised by the precision and the base, as well as the minimum and maximum

values of the exponent.

The quantity machine epsilon, which is often denoted by εM , is the distance from

1.0 in particular to the next largest floating point number [36, p. 37], i.e., εM = β1−t.

A related quantity is the unit roundoff. This is the maximum relative error in using a

floating point number x̂ to represent a real number x; it is usually denoted by u and

is given by u = 1
2
β1−t = εM/2. The unit roundoff is an extremely important quantity

in rounding error analysis and appears frequently throughout this dissertation.

See [36, Chapter 2] for a much more detailed treatment of the numerical issues

inherent in computer arithmetic.



Appendix B

Matrix Norms and the Condition

Number

Given a vector norm ‖·‖ : R → R, we can define a subordinate matrix norm ‖·‖ :

Rm×n → R by

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

.

The most important subordinate norms in numerical linear algebra are the matrix

p-norms, which are subordinate to the vector p-norms and therefore defined by

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

.

We most frequently make use of the matrix 1-, 2- and∞-norms, for which the following

results allowing them to be practically computed for a matrix A ∈ Rn×n can be

established.

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|, the maximum column sum,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij|, the maximum row sum,

‖A‖2 = (λmax(A
TA))1/2,

where λmax(B) denotes the largest eigenvalue of the matrix B.

In addition to these norms, we also make use of the Frobenius norm ‖·‖F : Rm×n →

R, which is not a subordinate norm but is instead defined by

‖A‖F =

(
m∑
i=1

n∑
j=1

|aij|2
)1/2

= (trace(ATA)).
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The condition number κ(A) of a matrix A ∈ Rn×n is defined with respect to a norm

by κ(A) = ‖A‖ · ‖A−1‖. If A is singular then its condition number is defined to be

infinite. For any subordinate norm, the condition number obeys the bound κ(A) ≥ 1

and for the Frobenius norm it can be shown that κF (A) ≥ n1/2.

The condition number of a square matrix A is an extremely important quantity

when describing the sensitivity of the linear system Ax = b to small changes in the

data. Assume that Ax = b and (A + ∆A)(x + ∆x) = b + ∆b, and suppose that

κ(A)γ < 1, where ‖∆A‖ ≤ γ ‖A‖ and ‖∆b‖ ≤ γ ‖b‖. Then we have

‖∆x‖
‖x‖

≤ 2κ(A)γ

1− κ(A)γ
.

Essentially, this means that the relative error in x is bounded by the condition number

of A multiplied by the relative errors in A and b [28, p. 81].

A problem is well conditioned if small perturbations in the data make correspond-

ingly small changes to the solution; otherwise, we say it is ill conditioned (so the

condition number κ(A) is a measure of the conditioning of Ax = b). In linear algebra,

we say that a matrix is well conditioned if it has a relatively small condition number;

otherwise we say it is ill conditioned. Precisely how we define “small” may depend on

the problem but we usually seek to minimize the condition number of any matrix that

we use in computations.

We will most commonly use the 2-norm condition number κ2 in this dissertation.

A real matrix A is normal if ATA = AAT . In particular, symmetric matrices are

clearly normal. For all normal matrices, we have

κ2(A) =
|λmax(A)|
|λmin(A)|

.
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Prominent Linear Algebra Libraries

We make frequent reference to the following linear algebra software libraries through-

out this dissertation, so we feel a brief description of each may be useful for the reader.

BLAS1 is not actually a software library but a specification for extremely efficient,

portable routines that perform basic linear algebra operations. Level 1 BLAS perform

scalar, vector and vector-vector operations; Level 2, matrix-vector operations; and

Level 3, matrix-matrix operations. They are the standard building blocks for these

operations in linear algebra software libraries.

LINPACK2 is a library of Fortran subroutines for solving linear equations and

linear least-squares problems. Created for use on supercomputers in the 1970s [17],

it is no longer as popular as it once was and has now been largely superseded by

LAPACK.

LAPACK3 is also a Fortran library but with a wider focus than LINPACK, con-

taining subroutines for solving many different numerical linear algebra problems. It

was originally conceived as a project to improve upon existing software libraries by

taking better advantage of the memory hierarchies on modern machines. LAPACK

routines do this by utilising block matrix operations (see Appendix D) to a large ex-

tent. They are designed to use calls to the BLAS as extensively as possible, especially

Level 3 BLAS.

1Basic Linear Algebra Subprograms.
2LINear algebra PACKage.
3Linear Algebra PACKage.
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Blocking and Parallelism

A blocked algorithm is one that performs operations on blocks of a matrix rather

than individual elements, rows or columns. Blocked algorithms are mathematically

identical to unblocked ones but try to take advantage of modern computer memory

hierarchies to be considerably more efficient in practice. This is done by maximizing

the reuse of data in the faster levels of memory: by moving a block of a matrix into

cache, it can be used repeatedly with no further look-up costs. In particular, blocked

matrix multiplication can be much more efficient than the unblocked version and hence

blocked algorithms generally make heavy use of it. Indeed, Golub and Van Loan in

[28, Chapter 1] state that “by a blocked algorithm we essentially mean one that is rich

in matrix multiplication.”

Parallel computing is the use of multiple computer resources simultaneously to solve

a single problem. Computer architectures that allow parallel computing have become

ubiquitous in recent years and are now the industry standard for high performance

machines [5]. It has thus become increasingly important that numerical algorithms and

software adapt to this paradigm and that scope for parallelism should be considered

when designing or evaluating an algorithm.
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Appendix E

Code

This appendix contains MATLAB code for three short functions that we made use of

in this dissertation.

E.1 expensive matrix

function A = expensive_matrix(n)

%expensive_matrix Computes a matrix that requires O(n^3)

comparisons for LDL ' factorization with rook pivoting.

% A = expensive_matrix(n) returns an n-by -n matrix A for

which the rook (bounded Bunch -Kaufman) pivoting

% strategy of Ashcraft , Grimes and Lewis requires O(n^3)

comparisons to determine the pivots.

% This code is adapted from code given in:

% N. J. Higham. Accuracy and Stability of Numerical

Algorithms. Second edition , Society for Industrial and

% Applied Mathematicians , Philadelphia ,

% PA, USA , 2002. xxx +680pp. ISBN 0 -89871 -521 -0 [page 228].

% Author: Thomas McSweeney , 2017.

A = zeros(n);
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A(n, 1) = 2;

for i = 2:n-1

A(i + 1, i) = n - i + 2;

end

A = A + A';

A(2, 2) = n;

end

E.2 more sorensen

function [L, DMC , P, D] = more_sorensen(A,delta)

%more_sorensen More and Sorensen modified Cholesky

algorithm based on LDL ' factorization.

% [L D,P,D0] = more_sorensen(A,delta) computes the

modified Cholesky factorization P*(A + E)*P' = L*D*L',

% where P is a permutation matrix , L is unit lower

triangular , and D is block diagonal and positive

% definite with 1-by -1 and 2-by -2 diagonal blocks. Thus

A+E is symmetric positive definite , but E is

% not explicitly computed. Also returned is a block

diagonal D0 such that P*A*P' = L*D0*L'. If A is

% sufficiently positive definite then E = 0 and D = D0.

The algorithm sets the smallest eigenvalue of D

% to the tolerance delta , which defaults to eps.

% The LDL ' factorization is computed using a symmetric

form of rook pivoting proposed by Ashcraft , Grimes

% and Lewis.

% This code is a modification of an existing code of

Cheng and Higham , altered to use the modified

% Cholesky algorithm of More and Sorensen rather than

that of Cheng and Higham; the original code is
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% available here: https :// github.com/higham/modified -

cholesky.

% Reference:

% J. J. More and D. C. Sorensen. On the use of directions

of negative curvature in a modified Newton

% method. Mathematical Programming , 16(1) :1-20, 1979.

% Authors: Bobby Cheng and Nick Higham , 1996; revised

2015.

% Modified by Thomas McSweeney , 2017.

if ~ishermitian(A), error('Must supply symmetric matrix.'),

end

if nargin < 2, delta = eps; end

n = max(size(A));

[L,D,p] = ldl(A,'vector ');

DMC = eye(n);

% (More and Sorensen) modified Cholesky perturbations.

k = 1;

while k <= n

if k == n || D(k,k+1) == 0 % 1-by -1 block

if abs(D(k,k)) <= delta

DMC(k,k) = delta;

else

DMC(k,k) = abs(D(k,k));

end
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k = k+1;

else % 2-by -2 block

E = D(k:k+1,k:k+1);

[U,T] = eig(E);

T = abs(T);

for ii = 1:2

if T(ii ,ii) <= delta

T(ii ,ii) = delta;

end

end

temp = U*T*U';

DMC(k:k+1,k:k+1) = (temp + temp ')/2; % Ensure

symmetric.

k = k + 2;

end

end

if nargout >= 3, P = eye(n); P = P(p,:);

end

E.3 ncm upper

function [upper] = ncm_upper(A)

%ncm_upper Upper bound on the distance to the nearest

correlation matrix.

% [upper] = ncm_upper(A) computes an upper bound for the

distance to the nearest correlation matrix

% to A, using the modified Cholesky factorization of

Cheng and Higham in the manner suggested by

% Higham and Strabic. We make use of the new f01md

routine from the NAG Library Toolbox for MATLAB
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% in order to compute the factorization.

% Reference:

% N. J. Higham and N. Strabic. Bounds for the distance to

the nearest correlation matrix.

% SIAM J. Matrix Anal. Appl . ,37(3) :1088 -1102 , 2016. doi:

10.1137/15 M1052007.

% Author: Thomas McSweeney , 2017.

if ~ishermitian(A), error('The matrix must be symmetric.'),

end

if any(diag(A) <= 0), error('The matrix must have strictly

positive diagonal entries.'), end

n = length(A);

delta = sqrt(eps)*norm(A,'fro');

uplo = 'L';

original = A; % Copy A before we overwrite it, for use

later.

% Compute the modified Cholesky factorization using f01md.

[A, offdiag , ipiv , ifail] = f01md(uplo , A, delta);

if uplo == 'L'

offset = 0;

M = tril(A) - diag(diag(A)) + eye(n);

else

offset = 1;

M = triu(A) - diag(diag(A)) + eye(n);

end
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% M = L or U.

% Apply the permutations directly to M, i.e. M = P'*L or M

= P'*U.

for i = n: -1:1

if ipiv(i) < 0

M([i -ipiv(i)], :) = M([-ipiv(i) i], :);

else

M([i ipiv(i)], :) = M([ipiv(i) i], :);

end

end

T = M'; % T = L'P or U'P (depending on uplo).

% Do the block diagonal matrix multiplication M*D = P'*L*D

or M = P'*U*D.

j = 1;

while j < n

if (ipiv(j)< 0) && (ipiv(j + 1) < 0)

dummy = M(:, j);

M(:, j) = dummy * A(j, j) + M(:, j + 1) * offdiag(j

+ offset);

M(:, j + 1) = dummy * offdiag(j + offset) + M(:, j

+ 1) * A(j + 1, j + 1);

j = j + 2;

else

M(:, j) = M(:, j) * A(j, j);

j = j + 1;

end

end

if (ipiv(n) > 0)

M(:, n) = M(:, n) * A(n, n);
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end

% Form A + E = A_pert explictly.

A_pert = M * T;

% Scale A + E to make it a correlation matrix.

dg = sqrt(diag(A_pert));

for i = 1:n

A_pert(:,i) = A_pert(:,i) ./ dg(i);

A_pert(i,:) = A_pert(i,:) ./ dg(i);

end

% Compute the bound.

upper = norm(original - A_pert , 'fro');

end
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