
SCHEDULING WITH PRECEDENCE

CONSTRAINTS IN HETEROGENEOUS

PARALLEL COMPUTING

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2021

Thomas E. McSweeney

Department of Mathematics

School of Natural Sciences



TABLE OF CONTENTS

LIST OF TABLES 5

LIST OF FIGURES 7

ABSTRACT 11

DECLARATION 12

COPYRIGHT STATEMENT 13

ACKNOWLEDGMENTS 14

1 INTRODUCTION 15

1.1 TASKS AND GRAPHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 SCHEDULING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 STRUCTURE OF THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 REPRODUCIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 OPTIMIZING SCHEDULING HEURISTICS FOR ACCELERATED ARCHITECTURES 24

2.1 RISE OF THE GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 SCHEDULING FOR CPU AND GPU . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 HEURISTICS AND APPROXIMATION ALGORITHMS . . . . . . . . . . . . . . . . . 32

2.3.1 HEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 PEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



2.3.3 HLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 HeteroPrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 PRIORITY-BASED HEURISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Task prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Processor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.3 Task prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5.4 Processor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 THE CRITICAL PATH IN HETEROGENEOUS SCHEDULING 78

3.1 GENERIC SCHEDULING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 USES OF THE CRITICAL PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 APPROXIMATING THE CRITICAL PATH . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.3 Stochastic interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.2 Task priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.3 Critical path assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 PREDICTING SCHEDULE LENGTH UNDER UNCERTAINTY 106

4.1 A LONGEST PATH PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.2 Scope of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 BOUNDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 On the moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.2 On the distribution function . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 HEURISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3



4.3.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.2 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.3 Fitting a distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 REDUCE PATHS, THEN MAXIMIZE . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.1 Identifying path candidates . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.2 Approximating the maximum . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.2 Analysis of longest path distributions . . . . . . . . . . . . . . . . . . . 132

4.5.3 Comparison of existing heuristics . . . . . . . . . . . . . . . . . . . . . 137

4.5.4 Evaluating RPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 150

5 STOCHASTIC SCHEDULING 153

5.1 A MULTIOBJECTIVE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 HEURISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 ACCELERATING MCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 CONCLUSION 166

6.1 FUTURE RESEARCH DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.1 Hybrid scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

BIBLIOGRAPHY 171

Word count 55800

4



LIST OF TABLES

Table 1.1 Common notation used throughout thesis. . . . . . . . . . . . . . . . . . 19

Table 2.1 Notation specific to this chapter. . . . . . . . . . . . . . . . . . . . . . . . 31

Table 2.2 Averaging schemes defined by how they compute the weight of a generic
task ti and edge (ti , tk ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 2.3 Summary of timing data (in microseconds) for Cholesky factorization
BLAS/LAPACK kernels. 1000 timings were observed for each kernel and
tile size nb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 2.4 Acceleration ratios for Cholesky factorization kernels. . . . . . . . . . . 57

Table 3.1 Extensions of the averaging schemes from Table 2.2 for generic hetero-
geneous scheduling, defined by how they compute the average weight
of a task ti and edge (ti , tk ). . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 3.2 Task priority lists corresponding to different averaging schemes and the
resulting HEFT schedule makespans for the graph from Figure 3.1. In
case of identical priorities, the task with the higher numerical index was
given higher priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 3.3 HEFT schedule makespans corresponding to different methods of using
MC data to compute priorities for the graph from Figure 3.1. In case of
ties, the task with the higher numerical index was given higher priority. 90

Table 3.4 Paths which were observed to be critical, and how frequently, for 1000
MC realizations of the graph from Figure 3.1. . . . . . . . . . . . . . . . . 91

Table 4.1 Time required to generate empirical longest path distributions for
Cholesky graphs with different choices of weight distributions. Recall
that n is the size of the graph, N is the number of tiles along both axes
of the matrix, and nb is the tile size. . . . . . . . . . . . . . . . . . . . . . 134

Table 4.2 Summary statistics of empirical longest path distributions for Cholesky
graphs with s = 1 and nb = 128. Trends in the data were similar for other
parameter choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5



Table 4.3 Number of paths that were observed to be critical for Cholesky graphs
(with s = 1) using MC method with 100,000 samples and different weight
distributions. Results were similar for s = 4. . . . . . . . . . . . . . . . . . 150

6



LIST OF FIGURES

Figure 1.1 Task DAG for Cholesky factorization of a 5×5 tiled matrix. Labels and
colors indicate the BLAS/LAPACK routine that the task represents. Tile
indices not shown for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.1 Schedule length ratios (SLRs) of task prioritization schemes for Cholesky
graphs with different combinations of s (number of GPUs) and nb (the
tile size). Black line indicates the random prioritization. Red shaded
region represents the difference between the best and worst upward
ranking averaging schemes for each graph and the blue region likewise
for the optimistic cost averages. Recall that N is the number of tiles
along both axes of the matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 2.2 Mean percentage degradation (MPD) of task prioritization schemes for
Cholesky graphs with different combinations of s (number of GPUs) and
nb (the tile size). Solid red bars indicate upward ranking and striped
blue bars optimistic cost averages; recall that the SB, SW, SHM and SGM
averages are not defined for the optimistic costs. Legends identify the
three best schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 2.3 Mean percentage degradation (MPD) of task prioritization schemes for
entire STG set. Solid red bars indicate upward ranking and striped blue
bars optimistic cost averages; recall that the SB, SW, SHM and SGM
averages are not defined for the optimistic costs. Legend identifies the
three best schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 2.4 Mean percentage degradation (MPD) of task prioritization schemes
for STG set with different combinations of s (number of GPUs) and β
(the CCR). Solid red bars indicate upward ranking and striped blue bars
optimistic cost averages; recall that the SB, SW, SHM and SGM averages
are not defined for the optimistic costs. Legends identify the three best
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 2.5 Reduction in makespan achieved by applying the autopsy method to
HEFT schedules for Cholesky graphs with different combinations of s
(number of GPUs) and nb (the tile size). Black horizontal line indicates
equality, so that data points beneath represent a negative reduction—
i.e., the new schedule is worse than the old one. . . . . . . . . . . . . . . 69

7



Figure 2.6 Reductions in makespan achieved through the autopsy method for STG
set with different combinations of s (number of GPUs) and β (the CCR).
Black horizontal lines indicate equality so that values above imply supe-
rior performance. Legends indicate the mean percentage reduction and
the percentage of graphs for which the autopsy method gave a better
schedule. Subsets with β= 10 are omitted because both the HEFT and
autopsy schedules were objectively poor. . . . . . . . . . . . . . . . . . . 71

Figure 2.7 Schedule length ratios (SLRs) of processor selection rules for Cholesky
factorization graphs with tile size nb = 128 and different values of s (the
number of GPUs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 2.8 Mean percentage degradation (MPD) of processor selection rules for
STG set with different combinations of s (number of GPUs) and β (the
CCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.1 Example graph with labels representing computation and (nonzero)
communication costs on a two-processor target platform. The brack-
eted red labels near the vertices represent the task execution times on
the two processors in the form [W 1

i , W 2
i ] and the edge weights represent

the communication cost between tasks when they are scheduled on
different processors; note that zero is therefore always an alternative
edge weight but is omitted for clarity. Despite its simplicity, there are
several different ways that we can define the critical path of this DAG. . 80

Figure 3.2 Critical paths for the graph from Figure 3.1 estimated using the indi-
cated averaging schemes. We see that different averages can lead to
very different critical paths. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 3.3 Mean percentage degradation (MPD) of task prioritization schemes for
Cholesky set with different combinations of V (coefficient of variation)
and β (the CCR). Legends identify the three best. Red bars represent
averaging-based schemes, yellow those based on bounds on the critical
path length, and blue those derived from the stochastic interpretation
described in Section 3.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 3.4 Mean percentage degradation (MPD) of task prioritization schemes for
STG set with different combinations of V (coefficient of variation) and
µccr (mean CCR). Legends identify the three best. Red bars represent
averaging-based schemes, yellow those based on bounds on the critical
path length, and blue those derived from the stochastic interpretation
described in Section 3.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8



Figure 3.5 Mean percentage degradation (MPD) of path assignment schemes for
Cholesky graphs with different combinations of V (coefficient of varia-
tion) and β (the CCR). Legends identify the three best. Red bars repre-
sent averaging-based schemes, yellow those based on bounds on the
critical path length, and blue those derived from the stochastic inter-
pretation described in Section 3.3.3. The purple bar represents no path
assignment and the green assigning a randomly-chosen path. . . . . . . 103

Figure 3.6 Percentage of the 62140 graphs from the STG for which EFT was not
the best that each of the path assignment methods were instead (so
that higher values indicate better performance). Legend identifies the
three best. Ties are not distinguished so sum of percentages may exceed
100. Red bars represent averaging-based schemes, yellow those based
on bounds on the critical path length, and blue those derived from
the stochastic interpretation described in Section 3.3.3. The green bar
represents assigning a randomly-chosen path. . . . . . . . . . . . . . . . 104

Figure 4.1 A schedule for the task graph from Figure 3.1. Displayed in this manner,
the makespan is clear. Note that although there is a gap in which both
processors are idle due to communication delays, this is in fact an
optimal schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 4.2 Schedule graph corresponding to schedule from Figure 4.1 and task
graph from Figure 3.1. Task execution costs under the schedule are
denoted by the red labels near the nodes. Unlabeled edges have zero
cost, including disjunctive edges which are indicated by the dotted lines.
Red highlighted edges comprise the longest path. . . . . . . . . . . . . . 108

Figure 4.3 Histograms of empirical longest path distributions for Cholesky sched-
ule graphs in the three cases that the weights follow normal, gamma or
uniform distributions. Vertical black lines indicate the mean and are
included as a visual aid only. Recall that N is the number of tiles along
both axes of the matrix, nb is the tile size, and s is the number of GPUs
in the target platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 4.4 Progression of MC solution with increasing numbers of samples for
Cholesky graphs with gamma-distributed weights, s = 4 and nb = 1024.
Trends were similar for other weight distributions and choices of s
(number of GPUs) and nb (tile size). . . . . . . . . . . . . . . . . . . . . . 141

Figure 4.5 Bounds and approximations to the longest path variance for Cholesky
graphs with different combinations of s (number of GPUs) and nb (tile
size). Yellow shaded area defines region within Kamburowski’s upper
and lower bounds. Black curve indicates reference solution. Note the
logarithmic scale on the y-axes. . . . . . . . . . . . . . . . . . . . . . . . . 142

9



Figure 4.6 Kolmogorov-Smirnov (KS) statistics of Sculli’s method, CorLCA and MC
heuristics for Cholesky graphs with different combinations of s (number
of GPUs) and nb (tile size). Statistics computed though comparison
with reference empirical distributions. . . . . . . . . . . . . . . . . . . . . 143

Figure 4.7 Execution time of heuristics and bounds for Cholesky graphs with differ-
ent combinations of s (number of GPUs) and nb (tile size). Timings are
normalized as a multiple of the CPM bound runtime. Kamb. represents
time for both Kamburowski’s mean and variance bounds. . . . . . . . . 144

Figure 4.8 Mean percentage error in variance estimates of Sculli’s method, CorLCA,
Kamburowski’s upper bound and MC10/100 for STG set with different
mean coefficients of variation µv . K. UPPER refers to Kamburowski’s
upper bound. Note that each bar represents an average over 7200/4 =
1800 graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 4.9 Mean Kolmogorov-Smirnov (KS) statistics of Sculli’s method, CorLCA
and MC10/100 for STG set with different mean coefficients of variation
µv . Statistics computed though comparison with reference empirical
distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 4.10 Kolmogorov-Smirnov (KS) statistics for RPM variants and MC10/100 for
Cholesky graphs with different combinations of s (number of GPUs) and
nb (tile size). Statistics computed though comparison with reference
empirical distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 4.11 Mean Kolmogorov-Smirnov (KS) statistics achieved by CorLCA, MC10/100
and RPM variants for the STG set with different mean coefficients of
variation µv . Statistics computed though comparison with reference
empirical distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Figure 5.1 Percentage reduction in expected value of schedule makespan achieved
by the best MC and UCB schedules after 100 iterations compared to the
corresponding HEFT schedule. Black horizontal lines indicate zero and
are included as a visual aid to help identify when scalarization methods
improved on HEFT (i.e., above the line) and when they were worse
(below the line). Legends indicate the average percentage reduction in
the expected value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 5.2 Mean Ph values obtained by MC, UCB and SHEFT schedules for dif-
ferent mean coefficients of variation µv . Recall that Ph represents an
estimate of the probability that a given schedule will be shorter than
HEFT’s, so that values below 0.5 indicate that the schedule is likely to
be worse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10



The University of Manchester
Thomas E. McSweeney
Doctor of Philosophy
Scheduling with Precedence Constraints in Heterogeneous Parallel Computing
December 6, 2021

Modern computers are parallel. From the most powerful supercomputers to desktop
machines, computing environments with multiple processing resources are ubiquitous.
Moreover, these resources are increasingly likely to be heterogeneous, differing widely
from one another in terms of their speed, energy consumption and so on. To exploit this
new landscape, scientific computing applications are often expressed in the form of a
graph, with vertices representing discrete chunks of work called tasks and edges indicating
the order in which they must be executed. This exposes the parallelism of the application,
but provokes an immediate question: which tasks should each processor execute, and
when? In other words, how do we find the optimal schedule that the processors should
follow?

First, we consider the case when there are only two different types of processing
resources. Computing environments of this type are widespread today, most commonly
comprising multicore CPUs and one or more GPUs. However many of the algorithms used
for scheduling such platforms do not exploit their unique properties. We investigate how a
common heuristic framework in which tasks are assigned priorities and scheduled in this
order can be optimized for accelerated platforms. We propose a suite of possibilities and
compare their performance with existing methods through extensive simulation, finding
that different choices are better in different situations.

Key to many scheduling heuristics is anticipating the critical path, the longest sequence
of tasks during the schedule execution. We describe how approximations of the critical
path are computed and used in scheduling heuristics for generic heterogeneous platforms,
suggesting also new methods of our own. These are then evaluated through simulation in
order to establish whether they are useful and, if so, when.

Given a schedule, how long will it actually take? This is a trivial question when the
task execution times and communication delays can be predicted exactly. But in practice
that will never be true, so they are often modeled as random variables instead of scalars.
However, computing the schedule duration then becomes an intractable problem. We
suggest a heuristic framework that may be useful for computing approximate solutions
and compare it to existing algorithms through numerical experimentation.

We conclude by considering the natural next question: how do we compute a schedule
which is robust to variation in the task execution and communication times? After review-
ing existing heuristics, with a focus on those that work by first transforming the problem
into a deterministic one, we propose a modification to one such algorithm which appears
to improve its rate of convergence.
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CHAPTER 1

INTRODUCTION

The most powerful modern supercomputers are fast approaching exascale, the capability

to perform at least 1018 floating-point operations per second. This represents orders

of magnitude more computational power than ever before. Two hardware trends are

largely responsible: supercomputers are now massively parallel, comprising thousands

or even millions of processing resources, and it is increasingly likely that these resources

will be heterogeneous. This architectural shift offers awesome potential: ideally, all of

the constituent parts of complex scientific computing applications will be performed

on the resource types that minimize their processing time, leading to almost perfect

efficiency. But realizing this goal requires successfully coordinating large sets of diverse

processing resources, allocating work to each of the processors so that the application

runtime is minimized and we avoid undue communication delays. This means that

exploiting modern high performance computing (HPC) architectures to their fullest extent

is only possible if we can devise good schedules for their many, possibly heterogeneous,

processors.

In this thesis, we study various permutations of this vitally important scheduling

problem. Efficiency is paramount in HPC, where machines can have annual energy costs

in the millions of dollars, so that is where the problem is most pertinent. But, as the current

hardware trends in HPC inevitably filter downward to everyday computing, we expect the

problems studied here to become more widely relevant in the immediate future.

15
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1.1 TASKS AND GRAPHS

Although high-performance computers have been almost universally parallel since at

least the 1990s, the massive recent growth in the number of processing resources offers

much more scope for parallel computation than ever before. Increasingly, machines

have a hierarchy of parallelism: across different compute nodes, between the processors

within those nodes, among the cores of those processors, and so on. This means that now

almost all codes that we write must be parallelizable in order to take full of advantage of

the available resources. This is problematic in light of the fact that parallel computing

has traditionally proven difficult from a programming perspective [44]. Therefore, the

question is, how do we successfully exploit all of this new parallelism without departing

too radically from the existing programs and software that have proven to be successful?

One paradigm that has become popular in recent years for striking this balance is

task-based parallel programming. The basic idea is to express the application that we

wish to execute as a collection of logically discrete atomic units of work called tasks and

specify the precedence constraints (or dependencies) between them. This gives us a task

(dependency) graph, where the vertices represent the tasks and the edges the precedence

constraints. Some applications naturally comprise sets of tasks, whereas for others there

may be flexibility in how tasks are defined. However, in this research we consider only

applications whose task graphs are directed acyclic graphs (DAGs)—directed and without

any cycles. Many scientific computing applications can be expressed in this form, as

illustrated by the example below. Writing parallel programs becomes much easier in the

task-based framework: the programmer just needs to implement sequential code—or

use efficient existing code—that operates at the task level. The downside is that good

performance now depends to a large extent on the ability to construct good schedules for

the resulting task graphs.

1.1.1 Example

In numerical linear algebra (NLA), Basic Linear Algebra Subprograms (BLAS) [50] is a

specification for extremely efficient, portable routines that perform fundamental linear

algebra operations. Level 1 BLAS perform scalar, vector and vector-vector operations; level

2, matrix-vector operations; and level 3, matrix-matrix operations. They are the standard



TASKS AND GRAPHS | 17

building blocks for these operations in linear algebra libraries, such as the classic Linear

Algebra PACKage (LAPACK) [11], which is designed to use calls to the BLAS as extensively

as possible. BLAS and LAPACK implementations are extremely common and vendors

often provide highly-optimized versions for their own architectures, such as the Math

Kernel Library (MKL) [62] for Intel processors, and the cuBLAS [94] and cuSOLVER [95]

libraries for NVIDIA GPUs.

As an example of how the BLAS may be used in the task-based programming frame-

work, suppose that we have a large, symmetric, positive-definite N ×N tiled matrix A,

A =


A11 . . . A1N

...
. . .

...

AN 1 . . . AN N

 ,

and we wish to compute its Cholesky factorization—i.e., find a lower triangular matrix L

such that A = LLT . There is an LAPACK kernel for computing the Cholesky factorization,

namely POTRF, that we could in theory apply directly to the entire matrix. However, this

does not exploit the parallelism inherent in the factorization itself. Superior performance

can be achieved by using POTRF at the tile level, in conjunction with common BLAS rou-

tines, in order to compute the Cholesky factorization of A in a manner which exposes

the underlying parallelism. Algorithm 1.1 outlines a standard way that this may be imple-

mented using GEMM (matrix multiplication), SYRK (symmetric rank-k update) and TRSM

(triangular solve) BLAS kernels [64], [77]. Note that, for the sake of efficiency, the lower

triangular part of the matrix A is overwritten with the entries of L.

By defining tasks as kernel calls on individual tiles of the matrix, it is straightforward to

construct the topology of a task graph which corresponds to Algorithm 1.1 once N , the

number of tiles along each axis, has been specified; for example, Figure 1.1 shows the DAG

topology when N = 5. Moreover, there is nothing special about Cholesky factorization: a

wide variety of other applications can also be expressed in the form of a task DAG, both in

NLA and across scientific computing in general.

1.1.2 Notation

At this point, we introduce some graph-related notation and terminology which will be

used throughout this thesis. A task graph G comprises n tasks and v edges. Tasks are

denoted by ti , for i = 1, . . . ,n, and are assumed to be labeled in such a way that for any
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Figure 1.1: Task DAG for Cholesky factorization of a 5×5 tiled matrix. Labels and colors
indicate the BLAS/LAPACK routine that the task represents. Tile indices not shown for
clarity.
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Algorithm 1.1: A practical algorithm for computing the Cholesky factorization of
a matrix using BLAS/LAPACK kernels.

1 for i = 1, . . . , N do
2 Ai i = POTRF(Ai i )
3 for j = i +1, . . . , N −1 do
4 A j i = TRSM(Ai i , A j i )
5 end
6 for k = i +1, . . . , N −1 do
7 Akk = SYRK(Aki , Akk )
8 for j = k +1, . . . , N −1 do
9 A j k = GEMM(A j i , Aki , A j k )

10 end
11 end
12 end

Table 1.1: Common notation used throughout thesis.

G Task graph
n Number of tasks
v Number of edges
ti An individual task, indexed by i = 1, . . . ,n
t1 The entry task/source
tn The exit task/sink

(ti , tk ) An edge from ti to tk

Γ+i Indices of children of ti , k ∈ Γ+i ⇐⇒ ∃ (ti , tk )
Γ−i Indices of parents of ti , h ∈ Γ−i ⇐⇒ ∃ (th , ti )

directed edge (ti , tk ) from ti to tk we have k > i ; in other words, t1, t2, . . . , tn is a topological

sort of the tasks. We refer to the immediate successors of a task as its children and define

Γ+i to be the set of indices of the children of ti —i.e., k ∈ Γ+i ⇐⇒ ∃ (ti , tk ). Similarly, the

immediate predecessors of a task are referred to as its parents, whose indices are contained

in the set Γ−i . A task with no parents is called an entry task or source, and one with no

children is an exit task or sink. The DAG in Figure 1.1 has only one source and sink. In

principle there may be many, however in such cases it is often convenient to add a single

artificial source, representing a dummy task, and likewise for the sink. Therefore, without

loss of generality, we will assume that all of the task graphs we consider in this thesis have

only one source t1 and one sink tn . Table 1.1 summarizes all of this notation for future

reference.



20 | INTRODUCTION

1.2 SCHEDULING

Given a heterogeneous target platform and a task DAG that we wish to execute on it, the

immediate question that arises is: how do we assign the tasks to the processing resources

in the best possible way? In other words, what schedule should we follow? A schedule is a

mapping from tasks to processing resources that tells us which tasks should be executed

by each processor and, ideally, in what order this should be done and precisely when

each task’s execution should begin. Any prospective schedule should be valid in the sense

that precedence constraints are respected and no task’s execution is attempted until all of

its children have been processed. But, of course, we don’t just want any valid schedule;

we want to find the schedule which optimizes one or more objectives. In HPC, this will

typically be to minimize the makespan, the total length of time it takes to execute the

schedule (i.e., the finish time of the exit task). Other objectives, such as minimizing the

total energy expenditure are also clearly desirable as well. Objectives will always be clearly

stated when we discuss specific problems in later chapters.

For a given objective function, we can define for each task and each processor a

cost that encodes useful information about how scheduling the task on the processor

contributes toward the objective. For example, if we want to minimize the makespan, it

is sensible to define the cost of the task as its execution time on the processor. Similarly,

we could define for each edge a set of costs corresponding to the communication delay

between the relevant tasks when they are scheduled on different pairs of processors. In

practice, these costs, however we choose to define them, will rarely be known exactly

before runtime, when the tasks are actually processed and the necessary data transfers are

made. However, we can model them beforehand, either as scalars (see Chapters 2 and 3)

or random variables (Chapters 4 and 5).

A fundamental distinction is made between offline (or static) scheduling and online

(or dynamic) scheduling. Static schedules are fixed before execution—i.e., computed

offline—based on cost estimates available at that time, whereas dynamic schedules are

determined during runtime. There are generic advantages and disadvantages to both:

offline scheduling allows deeper analysis of the task graph so is typically superior when

cost estimates are sufficiently accurate, whereas online scheduling is more practical when

cost estimates are poor or only become apparent at runtime. We are mostly concerned
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with offline scheduling in this thesis but there will be references to online scheduling

throughout.

As a general rule scheduling problems tend to be computationally hard and the ones

considered here are not exceptions. Formal complexity results are stated where relevant

in later chapters but it suffices to say here that the problems that we study are typically

so difficult that we must rely on heuristics that give us reasonably good solutions with

practical runtimes. Note that we will assume some familiarity with basic concepts from

computational complexity theory, such as what it means for a problem to be NP-hard or

the definition of an approximation algorithm.

1.3 STRUCTURE OF THESIS

The remainder of this thesis comprises five chapters. Other than Chapter 6, the con-

clusion, which summarizes all of the preceding chapters and outlines potential areas of

future research, each chapter is focused on a separate topic that falls under the rubric of

heterogeneous scheduling. We provide the following high level overview.

In Chapter 2, we consider the specific problem of scheduling for accelerated platforms

comprising processing resources of only two different types, without loss of generality

assumed to be CPUs and GPUs. Computing environments of this type have become ubiq-

uitous in HPC, however many of the scheduling heuristics that are employed for them were

originally developed for more diversely heterogeneous platforms and do not successfully

exploit their binary heterogeneity. Therefore the aim of this chapter is to investigate how a

common heuristic framework, in which tasks are assigned priorities then scheduled in

this order according to some processor selection rule, can be optimized for accelerated

architectures. In particular, tasks are often prioritized according to the estimated length of

the longest (or critical) path from each task to the sink. But in heterogeneous computing

these critical path lengths cannot be predicted during scheduling since there are many

possible values each of the DAG weights may take. One solution is to average the possible

weights and compute the critical paths of the resulting scalar-weighted graph. However, it

isn’t clear which type of average is most effective for CPU-GPU platforms. Our contribution

in this thesis is to propose several averages that intuition suggests may be well-suited for

such platforms and compare them experimentally to others from the literature, identifying
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which are the most useful and when. In addition, we introduce a generic method intended

to improve any existing schedule by extracting the most accurate weights to use when

computing critical path lengths as task priorities. Finally, we propose two simple new

processor selection rules and compare their performance to several existing rules through

simulation.

In Chapter 3, we extend part of the investigation conducted in Chapter 2 to generic—

i.e., not just CPU and GPU—heterogeneous platforms and consider the broader question

of how the critical path should be both approximated and used in scheduling heuristics.

As alternatives to the averaging method for estimating the critical path, our main contri-

bution is to introduce two new approaches, one based on computing bounds on the path

length and the other a stochastic interpretation of the problem. We then evaluate their

performance compared to multiple different average types experimentally.

Rather than focusing on how we can compute a good schedule, in Chapter 4 our objec-

tive is the difficult related problem of how we can efficiently approximate the makespan

of a given schedule when the schedule costs are no longer scalars but stochastic. This is

an instance of a more general problem, with applications beyond scheduling, in which

the aim is to find the distribution of the longest path through a DAG with stochastic

weights. Our contributions here are threefold. First, by generating empirical schedule

makespan distributions for a real application, namely Cholesky factorization, we show

that the common assumption that the distribution will be approximately normal may not

hold. Next, we evaluate existing heuristics for the stochastic longest path problem through

simulation, identifying their respective strengths and weaknesses. Finally, we propose a

new heuristic framework of own, based on identifying a reasonably-sized subset of paths

which are likely to be critical and approximating the maximization of their lengths, which

aims to efficiently approximate the longest path distribution without assuming normality.

Tying together the preceding chapters, the aim of Chapter 5 is to investigate how

we can compute a schedule which compensates for stochasticity in the cost estimates.

Dealing with stochastic costs is difficult, so a popular approach to the problem is to

convert them to scalars. In particular, one existing iterative algorithm works by repeatedly

sampling the costs randomly from their distributions and computing candidate schedules

from the corresponding deterministic problems. Although conceptually simple, this

method may require many iterations to obtain a high-quality schedule. Therefore our
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main contribution in this chapter is to propose and evaluate an alternative method of

scalarizing the costs with the goal of producing good candidate schedules more quickly.

1.4 REPRODUCIBILITY

Except for Chapter 6 and this introduction, in every other chapter of this thesis we utilize

bespoke simulation software in order to evaluate new or existing algorithms. In the

interest of reproducible research, all of this software can be found at the following Github

repository:

https://github.com/mcsweeney90/thesis-code.

Moreover, the specific code relevant to each chapter can be found in the directory with

the corresponding name—e.g., chapter2 contains the codes for Chapter 2, and so on. All

of the simulation software was written in Python, as were the scripts used to generate and

analyze results. Specific version and package requirements are given in the repository

so that readers can repeat the simulations, or modify the code, if they so wish. All of the

results presented in this thesis were obtained on a desktop machine with an Intel i9-9820X

@3.30 GHz processor running Python 3.9.2 under an Ubuntu 18.04 operating system.

https://github.com/mcsweeney90/thesis-code


CHAPTER 2

OPTIMIZING SCHEDULING HEURISTICS

FOR ACCELERATED ARCHITECTURES

Modern heterogeneous computing environments often consist of just two kinds of proces-

sors: multicore CPUs and some type of accelerator, usually GPUs. However, many of the

heuristics that are commonly used for scheduling such platforms were originally designed

for much more diversely heterogeneous systems and do not successfully exploit this dual-

ity. Therefore, in this chapter we investigate how one popular heuristic framework that is

known to perform well in the general case can be optimized specifically for accelerated

platforms.

Note that this work is closely related to the paper “An efficient new static scheduling

heuristic for accelerated architectures” [85] which was published in the proceedings of the

International Conference on Computational Science (ICCS) 20201. The conference paper

introduces a new scheduling heuristic for accelerated architectures called Heterogeneous

Optimistic Finish Time (HOFT). However, in this chapter we take a broader view and

propose a suite of potential optimizations for the general heuristic framework that HOFT

belongs to, in addition to those which were described in the paper. This chapter and the

published paper should therefore be viewed as complementary.

1https://www.iccs-meeting.org/iccs2020/
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2.1 RISE OF THE GPU

About fifteen years ago, it became apparent that although Moore’s Law continued to hold

true, the performance improvement of single-core processors had begun to stagnate. This

was primarily because physical upper limits on their clock frequencies had been reached,

a problem sometimes referred to as the frequency wall [13]. To overcome this hurdle,

designers instead began to increase the number of processing cores on each individual

chip; thus we entered the multicore era. Today, mainstream computers—desktops, laptops,

tablets, games consoles—almost universally host multicore processors and modern HPC

systems may comprise millions of cores in total. The Oak Ridge National Laboratory’s

Summit, currently second on the TOP500 [88] list of the world’s fastest supercomputers,

has about 2.4 million cores in total—and this is far from atypical.

Although the move towards multicore allowed processors to maintain constant perfor-

mance improvement, energy issues soon came to the forefront. As processors have grown

more and more powerful, their energy consumption and heat production has grown in

kind, a problem sometimes called the power wall [37]. To alleviate this, heterogeneous

machines with different kinds of processors have became increasingly attractive. The idea

is that by performing vital (or compute-intensive) jobs on higher-power processors and

less pressing (or compute-intensive) jobs on lower power ones, we can reduce wasted

computational effort and improve overall energy efficiency [59]. This has proven to be a

successful template; for example, nine of the current top ten on the Green500 [87] list of

the world’s most energy efficient supercomputers—measured in terms of floating point

operations (flops) per watt of energy supplied—are of this type.

In the longer term it is expected that HPC architectures will comprise many different

processor types, each specialized for various tasks [15], [28]. However, at present the

landscape is dominated by platforms comprising multicore CPUs and more powerful

accelerators of another type. A wide variety of devices have been employed in this fashion,

such as field-programmable gate arrays (FPGAs), integrated chips that can be programmed

for specialized tasks. However the real driver of this trend has been the graphics processing

unit (GPU). For example, Summit comprises over 4000 nodes, each with two 22-core IBM

Power9 CPUs and six NVIDIA Tesla V100 GPUs.
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Spurred by their importance in the gaming industry, GPUs have become increasingly

cheap and powerful in recent years. Moreover, being optimized for graphics rendering,

they have proven to be adept at many other large, parallel applications [96]. Initially

research was largely focused on how GPUs (and other accelerators) could be used as a

replacement for the CPUs, or how work could be offloaded to them with little overall

coordination. However, the consensus today is that in order to achieve the best possible

performance we need to seamlessly integrate the different processor types [89]. In particu-

lar, this means that we require schedules for such platforms which successfully harness

both types of processor.

2.2 SCHEDULING FOR CPU AND GPU

To reduce the burden on the programmer, in practice task scheduling on accelerated

platforms is usually handled by a runtime system such as OpenMP [43], OmpSs [51], Quark

[142], ParSeC [28], StarSs [98], or StarPU [15]. Typically, these are designed for online

scheduling: all task allocations are decided at runtime based on the current state of the

platform and the set of tasks ready to be processed [127]. There are good practical reasons

for this decision. Shared resources make predicting task execution and data movement

times on modern platforms extremely difficult [3]. Furthermore, processing the entire task

DAG in the manner usually required by offline scheduling techniques can be prohibitively

expensive; many modern systems such as PaRSEC unfurl the DAG at runtime and never

allow users to view it in its entirety. Nevertheless, in this chapter we focus largely on offline

scheduling, which would appear to be a contradiction. However, we believe it is justifiable

to devote attention to the offline scheduling problem for the following reasons.

1. Good schedules can be surprisingly robust, even when the estimates used to com-

pute them are poor [2], [33]. Furthermore, modifying an existing schedule may be

advantageous compared to creating a new one from scratch at runtime [107].

2. Superior performance is possible in online scheduling contexts by using information

gathered from the DAG offline to guide decision-making (e.g., task priorities) [2], [3],

[37].
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3. More broadly, the principles underlying successful offline heuristics can often be

adapted for online scheduling. For example, multiple online versions of the classic

Heterogeneous Earliest Finish Time (HEFT) [131] heuristic have been proposed and

are actually used in real runtime systems [15], [37], [127].

4. Some runtime systems such as StarPU enable the offline analysis of application task

graphs built from previous execution traces [53], [127]. Incorporating real data in

such a way will improve the accuracy of the timing estimates used, making static

schedules more practical.

With these justifications in mind, we define the offline scheduling model that we follow

here more precisely in the next section. We refer the reader to the recent survey by

Beaumont et al. [19] for a comprehensive guide to the current state-of-the-art in online

DAG scheduling for accelerated platforms.

2.2.1 Model and definitions

Given an (accelerated) target platform and a task DAG representing an application that we

wish to run on it, fundamentally the scheduling problem we wish to consider is: which

tasks should be executed by each processing resource, and when? In this section we

introduce the scheduling model that we follow in order to study this problem. The model

is defined by the following assumptions, which we state with additional comments below.

We also introduce definitions and notation used throughout this chapter; a table for the

latter is also provided for ease of reference.

1. The target platform T comprises only processing resources of two types, which we

refer to, without loss of generality, as CPUs and GPUs.

We assume there are r CPUs and s GPUs, and q := r +s processing resources in total. When

necessary, we denote a specific processor by pa , where a ∈ [1, q] is an index such that if

a ≤ r then pa is a CPU and if a > r it is a GPU. Note that the labels should not always

be interpreted literally. In particular, in numerical examples presented later, CPU cores

are considered individually but entire GPUs regarded as discrete so that, for example, a

platform comprising 4 GPUs and 4 octacore CPUs would be viewed as 4 GPU resources

and 4×8 = 32 CPU resources. This is in keeping with much of the related literature and
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reasonable based on current programming practices [15], [127]. Similarly, a GPU could

actually be any other accelerator, such as an FPGA or even a different CPU type.

2. The task graph G has been given and the scheduler has full access to its topology.

This is a standard assumption in offline scheduling. As noted in the previous section,

for many runtime systems this is not currently possible, however for others it is, at least

in some fashion. Of course, it should be recognized that there are applications whose

corresponding task graph cannot be anticipated before runtime because of, for example,

conditional statements. But in other cases this is an entirely reasonable assumption.

For example, in many tiled numerical linear algebra applications, such as the Cholesky

factorization example from Section 1.1, the entire DAG structure can be generated easily

once a tile size has been specified. Given that these are widely-used across scientific

computing, this cannot be viewed as a niche case. Note that by assuming the DAG is given

we do not consider the important related problem of how to construct amenable task

graphs for a given application.

3. All tasks are atomic and cannot be divided across multiple resources or aggregated

to form larger tasks.

4. All processing resources can only execute a single task at any one time, which they

do without preemption.

These tie into the previous assumption to some extent: ultimately, we are assuming

that the task graph has been formed in such a way that these assumptions are sensible.

Given current accelerated architectures, in the future it may be interesting to consider

the possibility of individual tasks being processed by multiple CPU resources, as in [25],

but we do not assume that is possible here. Preemption refers to pausing the execution of

a task in order to execute another. However, we assume that once a processor begins to

execute a task it must complete it without interruption.

5. All processors can in principle execute all tasks, albeit with different execution times.

Of course, there are plenty of examples one can imagine in which this isn’t true—but

likewise many in which this is the case. For example, in NLA, implementations of the BLAS

are widely-available for both CPU and GPU.
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6. Each task has a single scalar computation time on each processor type.

The execution time of task ti on any CPU is denoted by ci and on any GPU by gi . Where

necessary, we denote the processing time of task ti on the specific processor pa by W a
i ∈

{ci , gi }. In reality, the real execution time of any task on any processor will never be known

precisely beforehand. However, modern runtime systems generally use good performance

models that allow this estimation to be made based on previous execution traces or other

similar data [127]. Our own small-scale experimentation with NLA kernels, described in

Section 2.5.1, also suggests that for certain common task types execution times tend to be

tight.

7. Task execution times on CPU and GPU are unrelated, in the sense that the accelera-

tion ratio ai := ci /gi may differ for distinct tasks.

This is one of the key features of CPU/GPU scheduling and has often been observed

empirically: for example, in NLA, GPUs are typically much faster than CPUs at multiplying

or factorizing very large matrices—classic embarrassingly parallel [91, p. 182] operations—

but the converse may be true when performing smaller, more serial tasks [5], [141]. Note in

particular that the acceleration ratio of a task may actually be less than one if its execution

time is smaller on CPU than GPU. Unrelated processors are known to make scheduling

problems more difficult, as described in Section 2.2.2.

8. Communication delays can occur.

In much of the CPU/GPU scheduling literature it is assumed that communication times—

including all latency and data movement—are either negligible relative to the task pro-

cessing times or sufficiently small that they can be safely ignored during scheduling. In

some application areas this is reasonable, at least in theory, such as NLA when tile sizes

are chosen to be sufficiently large [21], [121]. However, in practice, and for many other

applications, this is not always the case. Therefore in this chapter we consider nonzero

communication delays.

9. The platform is fully connected and all processor latencies and interconnect band-

widths are constant throughout.
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By assuming that bandwidths are the same for all time we are neglecting contention for

the communication resources. This corresponds to the classic macro-dataflow model

[140], which is widely-used in the scheduling literature but somewhat unrealistic, perhaps

especially for multicore architectures [4]. It should however also be noted that the kind of

heuristics that we consider here can typically be extended in a straightforward manner

for alternative models; for example, see [17] for an adaptation of HEFT to a one-port

communication model.

10. The communication delay between any two tasks scheduled on the same processor,

or on any pair of CPUs, is zero.

Disregarding communication delays between tasks on the same processor is a common

assumption in the literature and reflects the fact that memory accesses tend to be much

faster than data movement [17]. Similarly, we assume that all CPU-CPU communications

are zero to reflect the likelihood that CPU resources are individual cores in a shared

memory architecture. Of course, these assumptions are not representative of all possible

architectures but are intended to be broadly reasonable for an accelerated platform today.

11. For every pair of communicating tasks (ti , tk ) there is a single possible nonzero

communication delay di k . In other words, we assume that the CPU-GPU, GPU-CPU

and GPU-GPU communication delays are identical.

Traditionally, the communication delay W ab
i k between ti and tk when they are scheduled

on processors pa and pb , respectively, is modeled by

W ab
i k := Lab +

Di k

Bab
, (2.1)

where Lab is the relevant latency, Bab is the bandwidth of the link between the processors,

and Di k is the amount of data that must be moved between the tasks [131]. We assume

that the data movement cost dominates the latency and bandwidths are both symmetric

(Bab = Bba) and similar for all of the links, so that there are only two possible values

that W ab
i k may take: zero, when a = b or both pa and pb are CPUs, and some nonzero

scalar di k in all other cases. In theory, modern inter-GPU interconnects are often faster

than the links between the different processor types, so we could reasonably argue that

the communication delays will be smaller in that case, but in practice realizing these
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Table 2.1: Notation specific to this chapter.

r Number of CPU resources
s Number of GPU resources
q Total number of processing resources, q = r + s

pa An individual processing resource, indexed by a = 1, . . . , q

ci CPU computation time of task ti

gi GPU computation time of task ti

ai Acceleration ratio of task ti , ai = ci /gi

W a
i Computation time of task ti on processor pa , W a

i ∈ {ci , gi }

di k Nonzero communication delay between tasks ti and tk

W ab
i k Communication delay between (ti , tk ) on (pa , pb), W ab

i k ∈ {0,di k }

theoretical performance peaks is often difficult [73], so we do not make that assumption.

Questions can certainly be asked whether the communication model defined by Eq. (2.1)

is sufficient for the complex memory architectures of modern accelerated platforms.

However, most of the work presented here does not depend on the specifics of how the

communication delays are estimated, only that it can be done somehow.

12. A schedule maps all tasks to the processors that should execute them and specifies

the times at which their execution should begin.

In particular, the latter means that the order in which processors will execute their assigned

tasks is also fixed.

13. A schedule is optimal if it minimizes the makespan over the set of all possible

schedules.

Minimizing the makespan—the application runtime—is the most common aim in practice

so is the natural choice. Other objectives, such as reducing total energy expenditure,

are not explicitly considered here, although we suspect that much of what follows may

be applicable for alternative objectives if costs are suitably redefined. The problem of

optimizing two or more objectives simultaneously is however definitely beyond our scope.

For ease of reference we provide Table 2.1, which summarizes the notation used

throughout this chapter. (Recall that we also retain the notation introduced in Table 1.1.)
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2.2.2 Complexity

It should be clear that the DAG scheduling problem for CPU and GPU is simply an instance

of a more general combinatorial optimization problem in which we have a set of jobs with

various processing times and a collection of machines that must process them in order to

optimize some objective function. Graham et al. [58] introduced a compact notation for

classifying such problems, which was later extended by by Veltman, Lageweg and Lenstra

[135], using three fields α|β|γ, where α describes the machines, β the jobs and γ the ob-

jective function. In this notation, our problem is described by (Pr,Ps) | pr ec,com |Cmax,

where the first field indicates that we have r identical parallel processors of one type and s

of another, the second that the tasks are precedence constrained with communication

delays, and the third that our goal is to minimize the makespan.

Unfortunately, even simpler related problems are known to be intractable. For example,

it is well-known that the homogeneous parallel scheduling problem P | pr ec | Cmax is

NP-hard [72], with rare exceptions such as when P = 2 and all costs are uniform [40].

Likewise, the P | pr ec, c = 1 | Cmax problem with unit communication delays and task

processing times is also NP-hard [101]. Our problem is at least as difficult as these and

therefore also falls in that class. However, it is less difficult than the corresponding problem

R | pr ec, com |Cmax with arbitrary unrelated processors.

2.3 HEURISTICS AND APPROXIMATION ALGORITHMS

Approximation algorithms for the (Pr,Ps) | pr ec, com | Cmax problem are rare. How-

ever, at least one constant-approximation algorithm has recently been established for

(a variant of) the problem [8], [9], an extension of a previous algorithm for the corre-

sponding problem without communication delays [67]. These algorithms are discussed

in greater detail in Section 2.3.3. To the best of our knowledge, it is not known whether

(Pr,Ps) | pr ec, com |Cmax permits polynomial-time approximation schemes (PTAS). It

has been shown that both P | pr ec |Cmax and R | pr ec |Cmax do [61] but in general there

are few results concerning scheduling problems with communication delays.

One notable approximation algorithm for the P | pr ec | Cmax problem is Graham’s

classic List Scheduling (LS) algorithm [57], which proceeds as follows. First, a topologically
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sorted list of the tasks is computed. Then, whenever a processor becomes idle it scans the

list from the top until it finds the first task ready for scheduling, which it begins to execute.

For m identical processors, LS is a (2−1/m)-approximation algorithm, which was proven

(using a variant of the unique games conjecture proposed in [16]) to be the best possible

by Svensson [124]. Unfortunately, LS can perform arbitrarily badly for heterogeneous

processors: because processors are never idle when there are tasks available, a processor

may execute a task for which it has an arbitrarily long processing time because all better-

suited processors were busy when it became idle.

Given the scarcity of practical approximation algorithms in this area, in practice heuris-

tics with good average-case performance are usually preferred. As stated at the beginning

of this chapter, most of those used for scheduling accelerated platforms were originally

designed for the R | pr ec, com |Cmax problem, so we give a brief overview here. Broadly

speaking, they can be divided into four categories, with occasional overlap: guided-

random search, clustering, duplication-based, and listing heuristics [131]. The first is a

term used for any method that generates a large population of potential schedules and

then selects the best among them. Typically these are more general optimization schemes

such as genetic algorithms which are refined for the task scheduling problem. As a rule,

such methods tend to find high-quality schedules but take a long time to do so and are

therefore often impractical; for example, a comparative study by Braun et al. found that

genetic algorithms usually obtained superior schedules to all other alternatives when

scheduling sets of independent tasks but could take up to 300 times as long [30].

Clustering heuristics work by first grouping all tasks in the DAG and then scheduling

each cluster to a single processing resource, with the aim of reducing communication

costs [56]. This can be useful when such costs predominate, but the downside tends to

be that the initial clustering step is expensive [131]. Duplication-based heuristics also

attempt to reduce communication costs, this time by ensuring that communicating tasks

are scheduled on the same resource even if this requires them to be replicated—i.e., the

same task may be redundantly scheduled in more than one place [7]. Although they can

perform well, they also tend to have high time-complexity bounds since controlling the

amount of duplication is tricky: too much can lead to the system becoming clogged, with

duplicated tasks obstructing the optimal scheduling of others. In addition, it may not

always be possible in practice to duplicate tasks in the required manner.
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Listing heuristics have a simple two-step structure: a list of all tasks is constructed

in the task prioritization phase and they are then scheduled in this order according to

some rule in the processor selection phase [131]. This framework is sometimes known as

Ordered List Scheduling (OLS) to distinguish from the LS algorithm as described above

[111]. Listing heuristics are the most popular type in practice since they are typically

competitive with the alternatives whilst also being cheaper. The most prominent listing

heuristic in this area is HEFT, which combines low time-complexity and good schedule

quality; Canon et al. [35] compared twenty DAG scheduling heuristics empirically and

found that HEFT’s schedules were almost always among the shortest.

2.3.1 HEFT

To describe HEFT, first we must introduce the concept of the critical path. The term comes

from project management, where it is defined as the longest sequence of activities that

must be done in order to complete a project [68]. In a scheduling context, the critical path

is analogously defined as the longest weighted path through the task graph. Note that

this can only be calculated once a schedule has been computed and the DAG weights are

fixed. The length of the critical path from source to sink clearly gives a lower bound on

the schedule makespan. Moreover, the critical path length between any task and the sink

gives a lower bound on the future schedule costs after that task has been processed. For

homogeneous processors, the critical path can generally be anticipated before scheduling

because all tasks have only a single possible execution time. With this in mind, a natural

approach for a listing heuristic is to prioritize all tasks according to the length of their

critical paths to the sink, the idea being that tasks with the greatest downward path

length contribute most towards the eventual makespan and should therefore be given the

highest priority. This has proven effective in practice for various homogeneous scheduling

problems [1], [40], [70].

Unfortunately, it isn’t obvious how the critical path can be computed before scheduling

for heterogeneous processors, since there are multiple values each of the DAG weights may

take and therefore typically many paths that may become critical. Extending the older

Modified Critical Path heuristic [140], HEFT’s solution is to set all DAG weights to their
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mean values. We define the mean computation time wi of task ti by

wi := 1

q

q∑
a=1

W a
i = r ci + sgi

q
, (2.2)

where the middle expression is how the mean would be calculated for generic heteroge-

neous processors and the expression on the right is its simplification under the accelerated

scheduling model that we consider in this chapter. Similarly, the mean communication

delay between ti and tk is defined through

wi k := 1

q2

q∑
a=1

q∑
b=1

W ab
i k = s(2r + s −1)di k

q2
. (2.3)

After the DAG weights are set to their mean values, critical path lengths are computed in

the usual way—i.e., through dynamic programming. Starting from the exit task, we set its

upward rank (sometimes also called the bottom level) un = wn , then move up the DAG

and recursively compute

ui = wi +max
k∈Γ+i

(wi k +uk ) (2.4)

for all other tasks. The task prioritization phase then concludes by listing all tasks in

decreasing order of upward rank, with ties broken arbitrarily.

The processor selection phase of HEFT is straightforward: we move down the list and

schedule each task on the processor expected to finish it at the earliest time. However,

HEFT follows an insertion-based policy that allows tasks to be inserted in a processor’s load

between two others that have already been scheduled, assuming precedence constraints

are still respected. For a generic task ti , let Sa
i denote its start time when it is scheduled on

processor pa and F a
i denote the corresponding finish time. Clearly we have

F a
i = Sa

i +W a
i (2.5)

but the question remains of how we compute Sa
i in the first place. There are two cases to

consider. If ti is the entry task (i.e., i = 1), then trivially we have Sa
1 = 0. If ti is not the entry

task, then pa cannot begin to execute ti until all of its parents have been processed and

any necessary communication delays have expired. In other words, the earliest possible

time that pa could possibly begin to execute ti , disregarding any other tasks that may

already be scheduled on it, is given by

Da
i = max

h∈Γ−i
(F b

h +W ba
hi ). (2.6)
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To identify when pa can actually process ti , we then scan the list of tasks already scheduled

on pa in order of their expected start time and set Sa
i to the earliest time such that Sa

i ≥ Da
i

and there is no other task scheduled to start in the time interval [Sa
i ,Sa

i +W a
i ].

A complete description of HEFT is given in Algorithm 2.1. HEFT has time complexity

O(v · q) [131]. For dense DAGs, the number of edges v is proportional to n2, so the

complexity is effectively O(n2q). This compares well with many of the alternatives: with

communication delays, quadratic complexity in n is about the best that we can realistically

expect since each edge must be inspected at least once.

(Note that, rather than sorting all of the tasks into a list and scheduling tasks in that

order, we could instead maintain a list of those tasks that are currently ready for scheduling,

initialized with the source, and repeatedly select the one with the highest rank, updating

the list as new tasks become ready. Since upward ranking defines a topological sort of the

tasks, this formulation is equivalent to that given above, but is sometimes preferred.)

Algorithm 2.1: HEFT.

1 Set the mean weight of all tasks using Eq. (2.2)
2 Set the mean weight of all edges using Eq. (2.3)
3 Compute ui for all tasks according to Eq. (2.4)
4 Sort the tasks into a priority list L by non-increasing order of ui

5 for t ∈ L do
6 for a = 1, . . . , q do
7 Compute F a

i using Eqns. (2.5) and (2.6)
8 end
9 pmin := argmina F a

i
10 Schedule ti on pmin

11 end

HEFT has a long record of good performance in practice, including for CPU/GPU

platforms, and has arguably become the benchmark against which all new heterogeneous

scheduling heuristics are measured [19]. However, despite this empirical excellence, it has

no performance guarantee. Bleuse et al. [26] showed that even for the (Pr,Ps) problem

without communication delays and a single GPU (i.e., s = 1), HEFT’s approximation ratio

is at least r /2. Similarly, Amaris et al. [10] proved that if s ≤p
r then the approximation

ratio is greater than r+s
s2 (1−e−s), even for tasks without precedence constraints.
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CPOP. Given the versatility of HEFT, many extensions and similar heuristics have been

proposed. Indeed, introduced by the original authors in the same paper was Critical-

Path-On-a-Processor (CPOP), which largely proceeds as in HEFT, except for tasks that are

identified as being on the critical path. As the name suggests, these are always scheduled

on the same processor, in an attempt to reduce communication costs between them. To

identify critical path tasks, both upward and downward ranks are computed, where the

latter are defined by setting d1 = 0 for the source t1, then moving down the DAG and

recursively computing

di = max
h∈Γ−i

(whi +dh) (2.7)

for all other tasks. Intuitively, the sum of the upward and downward ranks of a task is

the longest path from source to sink which passes through that task, so that all tasks

with the greatest such sum are expected to be critical. Alternative ways of estimating the

critical path are possible in the CPOP framework; Gregg and Vasudevan propose one such

example [134]. Empirically, CPOP has usually proven inferior to HEFT for general DAGs

and heterogeneous platforms, although it can be superior when communication costs are

high [35], [131].

Alternative rankings. HEFT uses mean values to set task and edge weights but other

averages could just as easily be used instead. Zhao and Sakellariou [147] considered several

choices, including the median, maximum and minimum, with both upward and downward

ranking, through extensive numerical experimentation. Ultimately they concluded that

mean values certainly did not appear to be an obviously superior choice to the others,

although none of the alternatives dominated the comparison either. Perhaps the bigger

takeaway was that, although significant runtime reductions are possible by following the

best task priority list for a given DAG, actually identifying which method will produce that

priority list is very difficult. More decisively, their experiments suggested that upward

ranking almost always outperformed downward, although again there were instances in

which this was not the case.

Lookahead. Once all task priorities have been computed, the processor selection phase

of HEFT seems obvious: the very word priority suggests that the natural approach is to

act greedily. Ultimately, the question is, when do we not schedule a task on the resource
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which is expected to finish it at the earliest time? The obvious answer is: when we expect

that doing so will lead to a longer schedule in the end. HEFT with Lookahead [23] attempts

to infer the future effects of processor selections by simulating the scheduling of a task’s

children (in the usual greedy way), assuming that they immediately become ready—i.e.,

ignoring any other unscheduled parents they may have. The processor which minimizes

some average of the expected child finish times is then selected; the maximum and a

type of weighted mean were considered experimentally in the original paper, with the

latter performing marginally better. Note that the lookahead horizon can be extended

arbitrarily by assuming that the children of the initial child tasks are also scheduled in

the same manner, although this is subject to diminishing returns since the error from

disregarding unscheduled parents begins to accumulate. HEFT with Lookahead is reported

to perform slightly but consistently better than the standard algorithm, with the downside

of increasing the time complexity to O(n4).

HEFT-NC. All of the HEFT variants discussed above were intended for generic heteroge-

neous environments. However, HEFT-NC (No Cross) from Shetti, Fahmy and Bretschneider

[114] was designed for accelerated platforms in particular. The algorithm has the same

basic structure as HEFT but makes modifications to both the task prioritization and pro-

cessor selection phases. For the former, rather than using mean task computation costs to

set task weights wi in the upward ranking scheme given by (2.4), they instead define

wi = max(ci , gi )−min(ci , gi )

max(ci , gi )/min(ci , gi )
, (2.8)

with average communication delays wi k all set to zero. The motivation is that rather

than prioritizing tasks according to their average size, tasks which have the strongest

preference for one processor type should be prioritized instead. Indeed, equation (2.8)

is an amalgamation of two more intuitive ways of computing a preference score based

on the task weights, namely the difference (numerator) and ratio (denominator). It isn’t

clear to us, however, that the suggested combination of the two is successful in its aim. For

example, consider a task t1 such that c1 = 10 and g1 = 1, and another task t2 with c2 = 11

and g2 = 10. Then using Eq. (2.8) we would define

w1 = 10−1

10/1
= 9

10
and w2 = 11−10

11/10
= 10

11
,
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so that w1 < w2 and t2 has the greatest weight, despite the fact that t1 clearly has a stronger

preference. Nonetheless, we will evaluate the utility of this method for computing task

priorities experimentally in Section 2.5.3.

The processor selection phase of HEFT-NC proceeds largely as in HEFT, except for

when the chosen processor pa does not also minimize the task computation cost—i.e.,

W a
i 6= min(ci , gi ). In that case, the processor of the other type with the minimal expected

finish time, call it pb , is identified and a quantity

Y = F b
i −F a

i

F b
i /F a

i

is computed. Then, if wi /Y ≤ X , where X is a parameter called the cross threshold, ti is

scheduled on pa ; otherwise, it is scheduled on pb . Conceptually, the basic idea is to weigh

the expected makespan gain from choosing the fastest processor against the strength of

the task’s preference for processors of the other type. The immediate issue is how we find

a good cross threshold; X = 0.3 is suggested based on numerical experimentation but

finding the optimal choice in general is an open question. Shetti, Fahmy and Bretschneider

compared their new algorithm to HEFT for 2000 randomly generated DAGs, concluding

that it usually achieved a smaller makespan, with an average reduction of roughly ten

percent.

2.3.2 PEFT

Predict Earliest Finish Time (PEFT) [12] was the first heuristic to incorporate a degree of

lookahead into the HEFT framework without increasing the exponent of n in the time

complexity. In the processor selection phase, finish time estimates for the current task

on each of the processors F a
i are added to optimistic estimates Oa

i of the future costs we

expect to incur given that selection, and the processor which optimizes the sum of the

two is chosen—i.e., we schedule task ti on the processor popt defined by

popt := min
a

(
F a

i +Oa
i

)
. (2.9)

The optimistic cost estimates Oa
i are computed before the scheduling begins in the follow-

ing manner. Starting from the sink, we set Oa
n = 0 for all a = 1, . . . , q , then move upward

and recursively compute

Oa
i = max

k∈Γ+i

(
min

b=1,...,q

(
δab wi k +W b

k +Ob
k

))
, ∀a = 1, . . . , q, (2.10)



40 | OPTIMIZING

for all other i , where δab = 1, if a = b, and 0 otherwise.

Note that Oa
i is intended to be a lower bound on the future schedule costs, assuming

that task ti is scheduled on processor pa ; it is called optimistic because all processor

contention is ignored. With this in mind, it isn’t clear to us why the average value wi k is

used in equation (2.10), given that within the minimization each parent task is already

assumed to be scheduled on processor pb—why not use the actual communication delay

W ab
i k instead? Indeed, defining Oa

i using average values in some sense contradicts the

word optimistic since it does not in fact give a true lower bound on the remaining schedule

costs; see Chapter 3 for more on this. Therefore we suggest that Oa
i should instead be

defined by

Oa
i = max

k∈Γ+i

(
min

b

(
W ab

i k +W b
k +Ob

k

))
. (2.11)

At any rate, under the assumptions of our communication model there would appear to

be little difference between the two definitions, but in Section 2.5.4 we investigate which

seems to perform best empirically.

Computing the Oa
i is an O(qn2) operation—i.e., the same complexity in n as HEFT.

Furthermore, note that in the case of multiple identical processors, the cost is significantly

reduced since the optimistic cost estimates depend only on the processor type. In par-

ticular, under our accelerated model, for each task ti we only have two values Oc
i and

Og
i , representing the estimates assuming that the task is scheduled on a CPU or GPU,

respectively. Moreover, these can be computed recursively by setting Oc
n = Og

n = 0 then

working up the DAG using

Oc
i = max

k∈Γ+i

(
min

(
di k + gk +Og

k , ck +Oc
k

))
(2.12)

and

Og
i = max

k∈Γ+i

(
min

(
di k + ck +Oc

k , gk +Og
k

))
, (2.13)

to calculate the optimistic costs for a generic task ti . (These formulae follow the variant

defined by Eq. (2.11); under (2.10) the di k would be replaced by the average cost wi k

instead.)

Given the computational effort expended in computing the optimistic costs—and the

fact that they are very similar in nature to the upward ranks ui —it seems sensible to use
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them for computing task priorities as well. Hence PEFT defines task priorities Oi through

Oi = 1

q

∑
a

Oa
i = 1

q
(mOc

i +kOg
i ) (2.14)

where the second expression is how the ranks would be calculated under our accelerated

scheduling model. There are two differences with HEFT’s upward ranking step worth

noting. First, the task ranks do not include the cost of the task itself (although it is suggested

that the savings made through the lookahead are more beneficial overall). Second, the

Oi do not induce a topological sort of the tasks—i.e., k ∈ Γ+i 6=⇒ Oi ≥Ok . The algorithm

therefore proceeds by selecting the task with the largest rank from the current set of ready

tasks for scheduling, rather than following an ordered list.

PEFT was reported to obtain shorter schedules than HEFT on average for a large

collection of real and randomly generated DAGs. Performance was particularly good when

the number of processors is high, which is perhaps to be expected given that ignoring

contention when computing the optimistic costs is more reasonable in that case. However,

it isn’t clear that this trend will hold when there are lots of one kind of processor (i.e., CPUs)

but relatively few of another (GPUs).

2.3.3 HLP

In 2015, Kedad-Sidhoum, Monna and Trystam [67] proposed the first approximation

algorithm for the (Pr,Ps) | pr ec |Cmax problem, which defines a framework that we will

refer to as Heterogeneous Linear Programming (HLP). The basic idea is to divide the

scheduling problem into two stages: first, an assignment to a processor type is computed

for all tasks, then tasks are scheduled on a specific processor according to their assignment

using a good approximation algorithm for the P | pr ec |Cmax problem (i.e., Graham’s LS

algorithm).

Let xi be a binary assignment variable such that xi = 1 if task ti is assigned to CPUs, and

0 otherwise, and let α= {x1, . . . , xn} be a complete assignment of all the tasks. Clearly, we

want to compute an assignment which gives us the most scope to minimize the makespan

of the corresponding schedule; we will refer to this the assignment problem. There are two

classic lower bounds on the makespan of any schedule: the critical path of the task graph,

and the total amount of work done, divided by the number of processors—sometimes

referred to as the area bound. If we neglect communication delays (as in the original
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paper), the critical path Lα for a given assignment α is straightforward to compute since

all tasks weights are known and edge weights are all zero. Likewise, the area bound is

simply the maximum of the work assigned to the CPUs and GPUs. Let Cα be the total

amount of work done on CPUs and Gα be the corresponding GPU workload under the

assignment α, so that

Cα =
n∑

i=1
ci xi and Gα =

n∑
i=1

gi (1−xi ).

Then for the makespan Cmax we must have Cmax ≥λα := max{Lα, Cα

r , Gα

s } for all α, so that

the assignment problem is to find α such that λα is minimized. This can be expressed as

the following linear program (LP):

Minimize λ such that

Fi + ci xi + gi (1−xi ) ≤ Fk , ∀k ∈ Γ+i , ∀i ,

0 ≤ Fi ≤λ, ∀i ,
n∑

i=1
ci xi ≤ rλ,

n∑
i=1

gi (1−xi ) ≤ sλ,

xi ∈ {0,1}, ∀i .

Unfortunately, the LP above cannot be solved in polynomial time. However, if we re-

lax the integrality constraints on the xi —i.e., suppose xi ∈ [0,1]—then it can be. Let

α′ = (x ′
1, . . . , x ′

n) be the solution of the relaxed LP and let α∗ = (x∗
1 , . . . , x∗

n) be the feasible

assignment computed by rounding the corresponding x ′
i values to the nearest integer

(i.e., 0 or 1). HLP is defined by following the assignment α∗ and employing Graham’s LS

algorithm to schedule tasks on the specific resource of their assigned type.

The general approach of defining a problem as an LP, relaxing integrality constraints in

order to solve it polynomially and then rounding the answer to get a feasible solution is an

example of a common technique called randomized rounding [100], which is often used

to design approximation algorithms for NP-hard problems. And so it proved here: Kedad-

Sidhoum, Monna and Trystam showed that HLP achieves a constant approximation

ratio of 6 and was therefore the first algorithm with a performance guarantee for the

(Pr,Ps) | pr ec |Cmax problem.
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Despite this impressive result, in practice we are often more concerned with average

performance than a worst-case bound and HLP does not appear to improve on, for

example, HEFT in that regard [20]. With this in mind, Amaris et al. [10] proposed a

refinement of the algorithm called HLP-OLS. The assignment LP is formulated, relaxed

and solved as before, but instead of using the LS algorithm to schedule the tasks, Ordered

List Scheduling (OLS) is used instead, as in HEFT. To construct the list we compute upward

ranks, but rather than using mean values for the task weights, we use the weight indicated

by the assignment (i.e., if x∗
i = 1, we take the weight of ti to be ci , and so on). The tasks are

then sorted into a list according to their rank, and scheduled in this order on the processor

of their assigned type that is expected to complete them at the earliest time. HLP-OLS is

reported to achieve better empirical performance than the original algorithm. Moreover,

it has the same approximation ratio (i.e., 6). Amaris et al. also generalized HLP for Q ≥ 2

different processor types and proved that it achieves an approximation ratio of Q(Q +1).

However, their simulation results suggest that average performance is considerably poorer

than HEFT for Q = 3.

All of the aforementioned versions of HLP disregard communication, but Aba, Zaourar

and Munier [8], [9] extended the framework to incorporate communication delays. Their

model is broadly similar to our own, although simpler in that delays only ever occur

between different processor types (i.e., communication delays between distinct GPUs are

assumed to be negligible). However, even this proves somewhat problematic to integrate

into HLP whilst retaining the approximation guarantee. Two variants were proposed: a

non-polynomial time 6-approximation and, later, a polynomial time 6τ-approximation,

for some instance-specific τ. In both cases, formulating the assignment LPs requires some

subtlety since more straightforward choices do not permit the performance guarantees, a

clear drawback of this approach relative to heuristics like HEFT which handle alternative

communication models more easily. The authors also extend the HLP algorithm for a

simple energy model in which each task has a single CPU and GPU energy cost and the

sum of such costs must meet some budget. This is done by adding the budget constraint

to the LP before solving for the assignment.

Aside from the issues already mentioned, the main problem with the HLP approach is

that solving the assignment LP tends to be expensive, even when it can be done polynomi-

ally; using IBM’s popular CPLEX solver, runtimes an order of magnitude higher than for
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HEFT are reported [8], [9]. Moreover, it is isn’t clear that the gains are worth the extra com-

putational effort on average, although a modified version of HLP incorporating spoliation

(see below) was found to be the best of all the algorithms considered in [19].

2.3.4 HeteroPrio

Whereas HLP was created with theoretical guarantees in mind, another algorithm pro-

posed in recent years has a very different origin, first being developed as a practical method

for a single application [6] and then being extended to the general case because of its

good performance. Like HLP, there are several variants of HeteroPrio [2], [18], [20] but

the motivation is the same: rather than asking which processor a given task should be

scheduled on, as in HEFT and similar heuristics, why not change perspective and ask

which of the tasks a given processor should select instead?

HeteroPrio simulates the execution of the DAG offline and repeats the following pro-

cedure until all tasks have been processed. Whenever a processor pa becomes idle, it

considers the set of currently ready tasks R. These tasks are assumed to be sorted in

ascending order of their acceleration ratio ai = ci /gi , with ties broken according to some

prioritization scheme (e.g., upward ranks as in HEFT). If R is not empty, then pa pops a

task from the head of the ready task list if it is a CPU, or from the tail if it is a GPU. If R

is empty, then pa considers the set of tasks which are currently being executed by other

processors, in order of their priority. If any task is expected to finish earlier if it were

processed by pa , then it is spoliated: pa steals the task and begins its execution again from

scratch. Note that this is distinct from preemption because all work done by the other

processor is thrown away; in the offline case that we consider here, the task’s execution on

the other processor is never even begun and spoliation simply means changing an earlier

scheduling decision (something which is not possible in, for example, HEFT).

The motivation for the different order tasks are selected by CPUs and GPUs comes from

the fact that HeteroPrio was originally designed for scheduling independent tasks and

only later extended to DAGs by operating on the ready task set. For a set of independent

tasks, it can be shown that the optimal solution to the relaxed assignment problem—i.e.,

assuming xi ∈ [0,1]—can be obtained through a simple greedy algorithm that sorts all

tasks in ascending order of their acceleration ratio then, at the same rate, assigns tasks at
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the head to the CPUs and tasks at the bottom to the GPUs, with the final pivot task being

split between the two types such that the loads are balanced, if necessary [18], [19].

HeteroPrio has a good performance guarantee for independent tasks, achieving a

competitive ratio of 2+p
2 ≈ 3.41 in the general case, which reduces to 2 if the optimal

schedule makespan is greater than max{ci , gi } for all i = 1, . . . ,n [18]. This compares well

with the best cheap approximation algorithms in that case. The bound is less impressive

for task DAGs, with a variant of the basic algorithm shown to achieve an approximation

ratio of r + s for the problem without communication delays [18]. Interestingly, although

one might assume it would complicate the analysis, spoliation is key to the proof of this

bound.

In the average case, HeteroPrio has been found to perform very well, both in terms of

runtime and schedule quality; comparisons with other algorithms such as HEFT and HLP

in the literature have typically found that it is competitive, at least without communication

delays [2], [19], [20]. Furthermore, a modification of HeteroPrio which takes data locality

into account—and therefore communication—has been proposed [29]. Extending Het-

eroPrio to heterogeneous platforms with arbitrarily many different processor types was

considered by Kumar in his thesis [71], with a focus on designing sensible counterparts to

the acceleration ratio in that case. Performance was reported to be good, although again

communication delays were not considered.

2.4 PRIORITY-BASED HEURISTICS

The recent survey paper from Beaumont et al. [19] compared HEFT, HeteroPrio and HLP

(among others) experimentally using the pmtool [53] simulation environment in StarPU.

Despite the fact that the other two algorithms were specifically designed for accelerated

platforms, HEFT was still competitive. Furthermore, communication delays were not

considered in that study; one of the advantages of HEFT, certainly relative to HLP, is that

communication is straightforward to incorporate. Moreover, although the standard HEFT

algorithm was used as a reference there—as it tends to be elsewhere in the accelerated

scheduling literature—extensions such as HEFT with Lookahead or similar heuristics

such as PEFT were not included. With these points in mind, we investigated how the
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general framework underlying priority-based heuristics such as HEFT can be optimized

for accelerated architectures.

We define a generic priority-based heuristic as repeating the following procedure until

all tasks have been scheduled:

1. The task with the highest priority is selected from the set of ready tasks (task prioriti-

zation);

2. The task is scheduled on a processor according to some rule (processor selection);

3. The set of ready tasks is updated.

This definition is very similar to a classic listing heuristic, with the exception that we do not

assume priorities define a partial order of the tasks so we cannot (necessarily) sort them

into a list and schedule them in that order. If the priorities do induce a valid topological

sort then the two definitions are equivalent in the offline case that we study here; however,

we choose to formulate the framework in this way because it is both more flexible and

more easily adapted to the online scheduling models employed by most runtime systems.

In this section we propose multiple alternatives for the task prioritization and processor

selection phases of this simple algorithm.

2.4.1 Task prioritization

Ultimately, comparing the priorities of two ready tasks should tell us how important it is

that one is scheduled before the other. Clearly, there are many different ways that task

priorities can be defined, but upward ranking as defined in HEFT has proven effective.

However, it isn’t clear that using mean values is the best choice of average, even for general

heterogeneous platforms; for accelerated platforms with only two possible task weights—

which may be very different—this is especially true. As mentioned in Section 2.3.1, Zhao

and Sakellariou [147] studied this problem (for generic heterogeneous platforms), com-

paring the following averaging schemes, defined by the average types they use to set the

graph weights when computing upward ranks:

1. Mean (M), all weights are set to their mean values (the default);

2. Median (MD), all weights are set to their median values;
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3. Worst (W), all task weights are set with their worst (i.e., largest) possible values and

edge weights are set to the worst possible value given the assignment indicated by

the weights of the two tasks they connect;

4. Simple worst (SW), all weights are set to their worst possible values;

5. Best (B), all task weights are set with their best (i.e., smallest) possible values and

edge weights are set to the best possible value given the assignment indicated by the

weights of the two tasks they connect;

6. Simple best (SB), all task weights are set to their best possible values.

They found that the M ranking was not superior to all of the others, although none of the

alternatives was clearly dominant either. With this in mind, it seems reasonable to repeat

their comparison for accelerated platforms in particular. Indeed, it was observed in [20]

that using minimum values for task weights in HEFT —i.e., the B/SB rankings—led to

better performance on accelerated platforms without communication delays; this was

attributed to the fact that GPU processing times were always smaller and most tasks were

eventually assigned to the GPUs, so that using GPU times as weights more accurately

reflected the actual cost of the tasks.

In addition to the six averaging schemes listed above, below we describe eight other

averages that may be used, giving a total of 14 different schemes. Each of these defines a

complete task prioritization phase when upward ranks are computed using Eq. (2.4)—i.e.,

we compute ui for all i = 1, . . . ,n through the averaging scheme and take the ui to be task

priorities. For ease of reference, we provide Table 2.2, which defines how each averaging

scheme computes the weights wi and wi k of a generic task ti and edge (ti , tk ), respectively.

Alternative means. Consider what the upward ranks actually represent: estimates of

the critical path length from tasks to the sink. Since downward tasks have not yet been

scheduled, their weights cannot be anticipated without restricting the processor selection

phase; by using average values over all processors, HEFT is effectively assuming that

all processors are equally likely to be selected. But this seems unnatural: if a task’s GPU

execution time is much smaller than its CPU execution time, it is presumably more likely to

be scheduled on the former. Therefore it seems reasonable to weight the mean according

to the relative size of the processing times, with smaller values given more importance.
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Table 2.2: Averaging schemes defined by how they compute the weight of a generic task ti

and edge (ti , tk ).

Name wi wi k

M (2.2) (2.3)
MD Median of {W a

i }a=1,...,q Median of {W ab
i k }a,b=1,...,q

B min(ci , gi ) 0, if wi and wk same type, else di k

SB min(ci , gi ) 0
W max(ci , gi ) 0, if wi and wk both CPU, else di k

SW max(ci , gi ) di k

HM (2.17) (2.18)
SHM (2.17) 0
GM (2.19) (2.20)

SGM (2.19) 0
R max(ci , gi )/min(ci , gi ) 0
D max(ci , gi )−min(ci , gi ) di k

NC (2.8) 0
SD Std. dev. of {W a

i }a=1,...,q Std. dev. of {W ab
i k }a,b=1,...,q

In other words, we use the harmonic mean of the possible task weights, rather than the

arithmetic one. Let

hi =
q∑

a=1

1

W a
i

and ma
i = 1

W a
i hi

, ∀a = 1, . . . q,

for all i = 1, . . . ,n. Then under this prioritization scheme the weight of task ti would be

wi =
q∑

a=1
W a

i ma
i = q

hi
. (2.15)

There is a minor issue when extending this idea to the edge weights, since zero is always

one of the possible weights (from a processor to itself, or between any pair of CPUs) and

therefore their harmonic mean is conventionally defined to be zero as well. We consider

this possibility, however a more intuitive alternative may be to weight the values according

to the probable weights of the communicating tasks. In particular, for a generic edge (ti ,

tk ) define

mab
i k = ma

i ·mb
k = 1

W a
i W b

k hi hk
∀a,b = 1, . . . , q,

and

wi k =
q∑

a=1

q∑
b=1

W ab
i k mab

i k = 1

hi hk

∑
a,b

W ab
i k

W a
i W b

k

. (2.16)

Note that for the accelerated model that we consider here, the average task and edge

weights wi and wi k simplify to

wi = qci gi

r gi + sci
(2.17)
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and

wi k = di k r s(ci gk + ck gi )+di k ci ck s(s −1)

(r gi + sci )(r gk + sck )
. (2.18)

Following the lead of Zhao and Sakellariou [147], we refer to the averaging scheme defined

by using Eq. (2.17) for the node weights and Eq. (2.18) for the edge weights as harmonic

mean (HM), and the alternative defined by taking all edge weights to be zero as simple

harmonic mean (SHM).

The other classical mean is the geometric mean, defined for a generic set of data points

(x1, x2, . . . , xn) as

x =
( n∏

i=1
xi

)1/n

and therefore for the weight of a task in our model as

wi = (cr
i g s

i )1/q . (2.19)

Although the intuitive justification is weaker than for the harmonic mean, the geometric

mean is less sensitive to extreme values than the others so may be useful given the typical

disparity between task CPU and GPU execution times. Like the harmonic mean, the

geometric mean of all edge weights is zero, since that is always one of the possible values.

However, a common workaround in such cases is to add one to all values, so that for our

model the average weight of a generic edge (ti , tk ) would be given by

wi k = (di k +1)s(2r+s−1)/q . (2.20)

We refer to the averaging scheme defined by using a geometric mean for the task weights

and Eq. (2.20) for the edge weights as geometric mean (GM), and the version with all edge

weights taken to be zero as simple geometric mean (SGM).

Preference-based averages. As described in Section 2.3.1, equation (2.8) is used in the

HEFT-NC [114] heuristic as an average which attempts to quantify how strongly tasks

prefer one processor type relative to the other, rather than quantifying the relative sizes

of the tasks. In particular, task weights are set using Eq. (2.8) before computing upward

ranks, with all edge weights set to zero. We will refer to this averaging scheme as no cross

(NC) from now on. Recall that Eq. (2.8) is a combination of two alternative methods for

computing task preferences, namely the difference and ratio of the largest and smallest

execution times, whose corresponding task prioritization schemes we will denote by D
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and R, respectively. Conceptually, when deciding which of two tasks to schedule first,

rather than selecting the one expected to lie on a longer path through the remainder of

the DAG—and therefore contribute most to future schedule costs—this approach aims

to prioritize the task which lies on a path whose constituent tasks have the strongest

preference for processors of one type. Leaving aside the issues with the NC weighting

function that were identified previously, there are two other drawbacks with the three

preference-based schemes from [114] that we can see.

1. It is difficult to incorporate communication delays, particularly in light of the fact

that the smallest possible delay is always zero.

Since the minimum communication delay is always zero, NC and R in particular cannot

be applied directly to the edges since we need to divide by the smallest value.

2. The number of processors of each type is not taken into consideration.

It seems somewhat counterintuitive that a task’s preference is the same for platforms with

a single GPU and either 1 or 100 CPUs.

An alternative average that may quantify task preferences and also account for the two

issues highlighted above is the standard deviation. Intuitively, if the standard deviation of

a task’s possible processing times is small then the values are similar and the task therefore

has weak preference for either type, whereas a large standard deviation suggests a stronger

preference. Moreover, the standard deviation can easily handle zeroes and duplicated

values so can be applied directly to the edges as well. Therefore, we will investigate how

the corresponding averaging scheme—which we will refer to as SD—performs empirically

compared with the NC, R and D schemes.

Autopsy. The reason average values are used when computing the upward rank is that

scheduling decisions haven’t been made yet for future tasks. But if task assignments were

known then the majority of the weights would be determined and we can use those values,

as in the HLP-OLS [10] algorithm. As discussed in Section 2.3.3, computing an optimal

assignment using linear programming is expensive. However, a cheap alternative is to

simply use the assignment derived from a schedule produced by any other heuristic,

such as HEFT. In particular, we propose the following procedure, which we refer to as the

autopsy method.
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1. Get assignment α from the initial schedule.

2. Compute upward ranks using weights indicated by α and set as task priorities.

3. Schedule the graph again, but using new priorities and sticking to the assignment α.

Intuitively, the idea is to improve the schedule by re-running the heuristic used to compute

it with more “accurate” task priorities. Since the assignment of the new schedule is

identical to the old one, most of the lower bounds on the makespan—i.e., the path and

area bounds as described in Section 2.3.3—remain the same so one would hope that a

better task prioritization will reduce the gap. The only slightly awkward part here is the

second step: under our model, most of the weights of the task graph are determined

by the assignment α, with the exception of edges connecting two tasks scheduled on

GPUs, which are zero if the tasks are on the same GPU, and the nonzero communication

delay di k otherwise. In the spirit of HEFT, it seems most fitting to use the mean intra-

GPU communication cost s−1
s di k in that case. Of course, the autopsy method effectively

doubles the computational effort, assuming a priority-based heuristic is used to compute

the initial schedule, so it is imperative that the new schedule has a strong likelihood of

improving on the old one; this will be evaluated experimentally later.

In this chapter we only consider scheduling with the aim of minimizing the makespan.

In practice, although that is almost always one of the objectives, we often have others as

well. In particular, reducing the energy expended during the application execution has

become increasingly important in recent years. Commonly we have some sort of budget

defining a limit on the total energy expenditure (or the financial cost associated with

the energy expenditure) during the schedule execution; the aim is then to minimize the

makespan whilst simultaneously meeting the budget constraint. One common approach

for dealing with this kind of problem is to first compute an initial schedule which optimizes

the objective (i.e., the makespan) and then modify this to meet the constraint in such a

way that the degradation in the objective is minimized. Examples would be the Dynamic

Constraint Algorithm (DCA) [99] or the LOSS variants proposed in [108]. Since energy

costs will typically be defined by the assignment—i.e., whether a task is executed on a CPU

or GPU, or data needs to be moved from CPU to GPU memory—the autopsy method can

be combined with this technique, with an additional step between the first and second

above in which the assignment α is modified in order to meet the budget. Although we
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do not consider this here, it is worth noting as direction of possible future research (see

Section 2.6).

Optimistic costs. Intuitively, we can view upward ranking as determining task priorities

by aggregating local—i.e., node and edge—comparisons of the graph weights. An alter-

native approach would be to instead determine task priorities by comparing quantities

that represent more holistic estimates of “how good” it is to schedule the tasks on each

processor. In particular, as described in Section 2.3.2, the PEFT [12] heuristic computes

task priorities using the arithmetic mean of the set of optimistic costs over all processors.

In the accelerated case, for a given task ti , the latter consists of r copies of Oc
i and s copies

of Og
i . Clearly, any different average could be used instead, so it seems sensible to also

consider the alternatives listed in Table 2.2. However, since we don’t need to consider

nodes and edges separately, it doesn’t make sense to distinguish “simple” variants as was

done there, so we do not define the SB, SW, SHM or SGM averaging schemes in this case.

This gives us 10 possible averages over the sets of optimistic costs.

Apart from considering different average types, we make two minor changes to the

task prioritization as defined in PEFT. First, we use the alternative optimistic costs defined

by Eq. (2.11) rather than (2.10) because they give true lower bounds on the future schedule

costs in the different cases. Second, rather than averaging optimistic costs Oc
i and Og

i , we

define

Oc
i = ci +Oc

i and Og
i = gi +Og

i ,

and average the sets of those values instead. It was remarked in the original PEFT paper

[12] that including the task cost itself appeared to make little difference, but given the often

large disparities between CPU and GPU processing times it seems sensible to include

them here.

2.4.2 Processor selection

As discussed in Section 2.3.1, there is arguably much less scope for alternative processor

selection rules within the rubric of a priority-based heuristic: ultimately, the only reason

not to make the greedy choice is if we expect that doing so will lead to a worse makespan in

the end. In this section, we consider how the binary heterogeneity of accelerated platforms

can be exploited for making this determination.
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Binary lookahead. The HEFT with Lookahead heuristic as described in Section 2.3.1

applies the lookahead step for all processing resources when scheduling a task. For

an accelerated platform in which each core of the CPUs is considered to be a distinct

resource, this is potentially very expensive, even leaving aside the additional complexity

in n induced by the lookahead itself. A straightforward way to reduce this cost would be to

only consider some subset of the processors; this will presumably be less effective than the

full lookahead but may still be useful compared to the standard earliest finish time rule.

An intuitive choice that minimizes the cost and seems sensible for accelerated platforms

is to do the lookahead step only for the CPU expected to complete it at the earliest time

and the corresponding GPU. We refer to the processor selection phase defined by this

rule as binary lookahead (BL). Recall that there were two variants proposed in [23] which

differ in the kind of average used to compare the different sets of finish times for the child

tasks—i.e., the maximum or a weighted mean. Since our aim is to gauge the utility of the

binary restriction itself, rather than which of the two performs best, we consider only the

former here.

Optimistic lookahead. This idea of comparing only the best CPU and GPU resources

also occurs in the PEFT [12] heuristic. Rather than looking ahead through simulation,

the idea is to weigh best-case estimates of the future savings we can achieve against the

immediate time saved by making the greedy choice. In particular, suppose F c
i is the

expected finish time of task ti on the fastest CPU and F g
i the corresponding time on the

fastest GPU. Then if

F c
i +Oc

i < F g
i +Og

i ,

we select the fastest CPU, and otherwise the GPU. We call the processor selection rule

defined in such a way optimistic lookahead (OL). In Section 2.3.2, we described two slightly

different ways the optimistic costs could be calculated: either using Eq. (2.10) as in the

original heuristic, or using Eq. (2.11) instead. We refer to these variants as OL-I and OL-II,

respectively.

GCP and HAL. The optimistic costs used in PEFT are computed recursively so that each

value represents a lower bound on the total future costs given that a task is assigned to a

processor type. Intuitively, we can see how this is useful as a correction that prevents greedy
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processor selections obstructing globally optimal performance. However, it is possible

that the estimates are too optimistic to actually be useful in making this determination;

for example, it was noted in [23] that increasing the horizon for the (simulated) lookahead

could be detrimental because of the cumulative distortion from building on optimistic

finish time estimates. Therefore we suggest that it may be beneficial to do an optimistic

lookahead but keep the horizon local.

In particular, we propose two simple new processor selection rules based on consid-

eration of how each processor type selection affects the best possible finish times of a

task’s children. For each child task tk of a generic task ti , define εi k to be the shortest

possible time between when ti finishes and when tk does. Suppose ti is scheduled on a

CPU. Then there are two possible values εi k may take: ck , if tk is also scheduled on a CPU,

and di k + gk , if it is scheduled on a GPU—i.e.,

εi k ∈ {
ck , . . . ,ck︸ ︷︷ ︸

r

,di k + gk , . . . ,di k + gk︸ ︷︷ ︸
s

}
,

where the multiplicities reflect the number of processor selections for tk corresponding to

each value. However, if ti is scheduled on a GPU, then we have

εi k ∈ {
di k + ck , . . . ,di k + ck︸ ︷︷ ︸

r

,di k + gk , . . . ,di k + gk︸ ︷︷ ︸
s−1

, gk︸︷︷︸
1

}
.

Of course, we do not know where the child tasks will actually be scheduled no matter which

processor type ti is scheduled on. However, we can compare the values that we expect

εi k to take in the two different cases—i.e., model εi k as a random variable and compute

E[εi k | ti on CPU] and E[εi k | ti on GPU]. Then we can define a processor selection rule by

scheduling ti on the fastest CPU if

F c
i +max

k
E[εi k | ti on CPU] < F g

i +max
k
E[εi k | ti on GPU], (2.21)

and the fastest GPU otherwise.

We considered two different ways to compute the expectations. First, we can assume,

as when computing upward ranks in HEFT, that all processors are equally likely for each

child task—i.e., define the expectations as the arithmetic means of the sets of possible

values corresponding to each processor selection for the children. In fact, in this case

the selection rule greatly simplifies since it reduces to simply comparing the mean com-

munication cost of each edge assuming that ti is scheduled on either a CPU or GPU. In
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particular, if ti is scheduled on a CPU then the mean cost of the edge (ti , tk ) is s
q di k and

if it scheduled on a GPU then the mean cost is r+s−1
q di k , so that there is effectively an

expected penalty of r−1
q di k associated with choosing a GPU over a CPU (for each child).

This in turn suggests that we should always choose the fastest CPU for each task unless

F g
i + r −1

q
max
k∈Γ+

di k < F c
i ,

in which case we would choose the fastest GPU. We refer to this processor selection rule

as GPU communication penalty (GCP).

The obvious issue with the GCP rule is that assuming all processor selections are

equally likely is unrealistic. Alternatively, we could compute the expectation by taking

the harmonic mean of the possible values that εi k may take, so that smaller values are

accorded more likelihood. In this case, we have

E[εi k | ti on CPU] = qck (di k + gk )

r (di k + gk )+ sck

and

E[εi k | ti on GPU] = qgk (di k + ck )(di k + gk )

r g 2
k +d 2

i k +qdi k gk + sgk ck + ck di k
.

We call the processor selection rule defined by using Eq. (2.21) with these values harmonic

average lookahead (HAL).

2.5 SIMULATION RESULTS

To evaluate the methods proposed in the previous section, we used a bespoke software

simulator which implements the mathematical model described in Section 2.2.1 and

therefore facilitates the evaluation of scheduling algorithms for idealized accelerated

platforms. Although this model may not capture the full range of real-world behavior—

such as processor failure, cache misses, etc—this approach allows us to compare multiple

scheduling algorithms and determine how intrinsically well-suited they are for accelerated

architectures. Recall from Section 1.4 that the complete source code for the simulation

software can be found at the Github repository associated with this thesis2.

2https://github.com/mcsweeney90/thesis-code

https://github.com/mcsweeney90/thesis-code
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2.5.1 Testing environment

We used two different sets of task graphs in our simulations. The first comprised graphs

based on a single real application, namely Cholesky factorization, with computation

and communication costs generated through timing experiments on a real machine.

The second set contained graphs with randomly generated topologies from an existing

benchmark [128] and costs likewise generated randomly according to several parameters,

in an attempt to cover a wide range of possible applications.

Cholesky DAGs. For N = 5,10,15, . . . ,50, we constructed the topology of a task DAG for

the Cholesky factorization of an N ×N matrix according to Algorithm 1.1. This gave us

10 topologies with between 35 and 22100 tasks. We assume that all of the matrix tiles are

uniform and square, so that the corresponding graph weights are determined by a single

tile size parameter nb, the number of elements along the vertical (and horizontal) axes of

the tiles.

To generate realistic task computation costs on CPU and GPU, we timed the relevant

BLAS or LAPACK (CPU) and cuBLAS or cuSOLVER (GPU) routines for 1000 randomly

generated matrices of various sizes on a heterogeneous node of a University of Manchester

computer cluster [81]. This node comprises four octacore Intel (Skylake) Xeon Gold 6130

CPUs running at 2.10GHz with 192GB RAM and four Nvidia V100-SXM2-16GB (Volta)

GPUs, each with 16GB GPU global memory, 5120 CUDA Cores and NVLink interconnect.

As stated previously, we regard CPU cores as individual processing resources but GPUs

as discrete, so that in particular we timed each routine 1000 times on both a single CPU

core and an individual GPU. Table 2.3 summarizes the mean µ and standard deviation

σ of the kernel runtimes for tile sizes nb = 128 and nb = 1024. These sizes were chosen

because they roughly represent the lower and upper limits of what is practical for CPU-

GPU platforms: the GPU is wasted on smaller sizes and CPUs struggle for larger ones.

A common measure of the spread of a distribution is the coefficient of variation, calcu-

lated as σ/µ. For the data in the table, the coefficient of variation ranges from less than

0.01 to around 0.1, reflecting the fact that the timing distributions were reasonably tight

around the mean. Therefore we follow the usual convention of taking the mean values as

the scalar computation cost estimates used for scheduling. Assuming this to be the case,

Table 2.4 presents the acceleration ratios of the kernels. As we might expect, the ratios are
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Table 2.3: Summary of timing data (in microseconds) for Cholesky factorization
BLAS/LAPACK kernels. 1000 timings were observed for each kernel and tile size nb.

CPU GPU

nb = 128 nb = 1024 nb = 128 nb = 1024

Kernel µ σ µ σ µ σ µ σ

GEMM 89.9 9.1 41369.0 1063.0 11.3 1.5 446.4 1.9
POTRF 141.1 3.1 16219.5 434.3 84.8 0.7 1184.6 1.9
SYRK 72.2 2.3 23363.2 603.9 31.9 0.5 419.0 1.5
TRSM 75.2 7.9 22206.1 1167.0 44.1 0.5 916.6 3.4

Table 2.4: Acceleration ratios for Cholesky factorization kernels.

Tile size GEMM POTRF SYRK TRSM

128 8.0 1.7 2.3 1.7
1024 92.7 13.7 55.8 24.2

considerably greater for the larger tile size. Moreover, the preference strengths of the dif-

ferent kernel types are broadly what we might expect too, with the more straightforwardly

parallel GEMM (matrix multiplication) having the strongest preference for the GPU.

The tile size nb also dictates how much data needs to be moved between any two

tasks—and therefore the communication costs. Assuming that the entire tile needs to

be transmitted in all cases, we calculated rough estimates of the communication delays

through the following procedure.

1. Create a matrix of the given tile size with randomly generated double elements.

2. For each kernel, randomly generate any other necessary matrices/vectors and copy

them to GPU memory.

3. Start the CPU timer.

4. Apply GPU kernel to the matrix and time its execution separately on the GPU.

5. Stop the CPU timer.

The CPU-GPU communication delay is assumed to be the difference between the GPU

kernel execution time and the time taken for the entire operation. As with the computation

times, we repeated this procedure 1000 times and took the mean in order to get scalar

cost estimates. Based on the assumptions of our model, the CPU-GPU communication



58 | OPTIMIZING

delay was also taken to be the GPU-CPU and GPU-GPU communication delay as well. It

should be emphasized that modern runtimes systems will use much more sophisticated

performance models to estimate communication delays than the crude method described

here.

The relative size of the computation times and communication delays varies depend-

ing on the tile size and kernel type. Typically, we found that the communication delay

associated with a task—i.e., the time to move the associated data—fell somewhere be-

tween the CPU and GPU execution times, tilting more heavily to the former. But it isn’t

immediately clear how to quantify the relative amount of computation and communi-

cation in heterogeneous scheduling, since there are different possible costs depending

on where the tasks are scheduled. Therefore (arithmetic) mean values are typically used

instead [131]. In particular, a quantity β called the communication-to-computation ratio

(CCR) is often defined, computed through β= wi k /wi , for any parent and child pair ti

and tk , where wi and wi k are as defined by Eqns. (2.2) and (2.3) respectively. However,

since the quantity wi k /wi varies for different task types, even though the amount of data

moved is the same for all tasks, in this case it seems more sensible to consider the graph as

a whole and define its CCR through

β=
∑

i
∑

k wi k∑
i wi

, (2.22)

i.e., the ratio of the average total communication and the average total compute. Note that

since it uses mean values, the CCR depends on the composition of the target platform. In

our investigation, we assumed that the number of GPUs was fixed at r = 32 and considered

two different choices for the number of GPUs, s = 1 and s = 4 (see below). For tile size

128, CCR values for the Cholesky DAGs were around 0.25 with s = 1 and 1.0 for s = 4,

whereas for tile size 1024 the corresponding values were about 0.01 and 0.05, suggesting

that computation is more predominant in that case.

Randomly generated DAGs. As a testbed for benchmarking scheduling algorithms, To-

bita and Kasahara [128] proposed the Standard Task Graph (STG) set, a large collection of

artificial task graphs, which is freely available online at:

http://www.kasahara.cs.waseda.ac.jp/schedule/index.html.

http://www.kasahara.cs.waseda.ac.jp/schedule/index.html
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The graphs in the STG set were created using several standard methods for randomly

generating DAGs, with the intention of capturing as wide a variety of topological features as

possible. Therefore, we decided to use their topologies as the basis for a set of randomized

task graphs in our own simulation environment.

We followed a similar approach to [19] and [36] to generate computation costs for these

DAGs. In particular, for each task we sampled its CPU and GPU execution times from

gamma distributions with means 15 and 1, respectively. This corresponds to an expected

acceleration ratio of 15, which is broadly in line with what we observed when bench-

marking BLAS kernels. For both distribution choices, we assumed that the coefficient of

variation is equal to 1; this is somewhat larger than we observed for the BLAS kernels, but

we wished to consider a wider range of task acceleration ratios for these graphs. Unlike in

[19] and [36], we also needed to generate communication delays. To do this, we used the

following procedure, which takes a parameter β that represents a target CCR, as defined in

the previous section, for the task graph as input.

1. After setting computation costs for task ti , compute average wi using Eq. (2.2).

2. Sample `i uniformly at random from the interval (0, 2nβ
v ), where v is the total number

of edges in the DAG.

3. For all k ∈ Γ+i set the nonzero communication cost di k as

di k = `i q2wi

s(2r + s −1)
.

By choosing di k in this way we ensure that the target CCR for the graph is approximately

met, assuming that wi k is computed in the manner defined by Eq. (2.3) (i.e., arithmetic

mean). If we set ` = nβ
v for all tasks, then the target CCR would be achieved exactly,

however we introduced some randomness so that communication delays were not the

same for all edges. Although this meant that the CCR is only approximate, it was usually

very close to the target, especially for larger graphs. Moreover, the order of magnitude

differences between the values of β considered (see below) dwarf the uncertainty from the

cost-setting procedure.

The STG comprises several subsets, each corresponding to a different number of tasks

and containing 180 graphs; since the Cholesky factorization graphs vary in size, we used

only the subset with n = 1000 tasks. For each topology, we choseβ ∈ {0.01,0.1,1.0,10.0} and
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generated 10 different sets of costs for each. Altogether, this means that our randomized

graph set effectively comprised 180×4×10 = 7200 DAGs. (In fact, the size of the graphs in

the STG does not include the entry and exit tasks, so that the graphs in the set actually had

1002 tasks. However, we use the rounder figure for clarity.)

Target platforms. We considered only two different target platforms: one comprising

r = 32 CPU resources and s = 1 GPU, and the other r = 32 CPU resources and s = 4 GPUs.

These were intended to reflect the platform that we used to benchmark the Cholesky

BLAS kernels—i.e., four octacore CPUs and up to four GPUs—which is fairly typical for

an accelerated node in HPC today. The two different values s = 1 and s = 4 were used in

order to evaluate how the number of GPUs impacts the scheduling problem. Since we

kept the number of CPUs fixed at r = 32, we can therefore regard s ∈ {1,4} as a variable

which defines the target platform.

2.5.2 Performance metrics

When evaluating how good a schedule π with makespan |π| is for a given task graph, we

want to know how close it is optimal. Therefore the metric that we would ideally like to

use is the ratio |π|/|π∗|, where π∗ is the optimal schedule. Of course, actually computing

π∗ tends to be impossible for all but the smallest graphs, so some alternative must be used

instead. The natural choice is the tightest possible lower bound on the makespan. In much

of the recent literature [8], [19], the relaxed solution to the assignment LP (see Section 2.3.3)

is used, but, as noted earlier, this is difficult to even formulate for the communication

model that we follow here and would be expensive to solve at any rate. Therefore we used

a cheaper boundΩ computed by combining two classic bounds in the following manner.

First, we have the work bound, defined as the total amount of work that must be done

divided by the number of processors. Of course, the total amount of work done depends

on the schedule we follow, but we know that the work done for each task is bounded below

by the smallest of the two possible computation costs, so that

BW = 1

q

n∑
i=1

min(ci , gi )

gives a lower bound on the makespan. The other classic bound on the makespan is the

critical path bound, the length of the longest path through the task graph. Again, this is
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unknown until the graph is actually scheduled, but we have already seen a lower bound for

this quantity: the smallest of the two optimistic costs, as defined in the PEFT heuristic [12],

for the entry task t1. (As discussed in Section 2.3.2, the version from the original paper

is not a true lower bound since it uses average values but this can be fixed by using the

known values instead.) In other words,

BP = min
{

c1 +Oc
1, g1 +Og

1

}
also gives a lower bound on the makespan, where Oc

1 and Og
1 are as defined by Eqns. (2.12)

and (2.13), respectively. Bringing these together, we define

Ω= max{BW ,BP },

so that the ratio |π|/Ω is a measure of how close the schedule π is to the lower bound.

We refer to this as the schedule length ratio (SLR), following a similar quantity used in

[131], although how we calculate the makespan lower bound differs. Note that the SLR is

bounded below by one.

An alternative performance metric often used in the literature is the speedup. It is

in some sense contrary to the SLR, in that while the SLR indicates how much worse the

schedule makespan is than the optimal, the speedup suggests how well the schedule does

to one that is expected to be much worse. Define the minimal serial time (MST) to be the

shortest time in which the entire task graph can be executed on a single processor; in our

case, this is given by min(
∑

i ci ,
∑

i gi ). Then the speedup is defined as the ratio of the MST

and the schedule makespan, so that a large speedup suggests a better schedule than a

smaller one. We prefer to use the SLR rather than the speedup, with the exception of when

the speedup is useful for identifying when a schedule is so poor that it can be regarded as

having failed completely: namely, when the speedup is less than one.

Whereas the SLR and speedup both quantify how good a schedule is compared to

some reference, in our investigation we often computed several different schedules for the

same task graph and wanted to evaluate how good they were relative to one another. A

useful metric for this is the percentage degradation (PD), defined, for a given schedule, as

the percentage increase in makespan relative to the shortest computed schedule for that

task graph. Note that the PD is therefore bounded below by zero and a low PD is better

than a high one.
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2.5.3 Task prioritization

As there were so many different task prioritization schemes described in Section 2.4.1,

to compare them fairly we assumed that the standard earliest finish time (EFT) rule was

used for processor selection in all cases (with the partial exception of the autopsy method,

which only uses EFT to choose between processors of the assigned type). Although there

is clearly some interplay between the two phases of the priority-based framework, in

general one would expect a good prioritization scheme to perform better than a bad

one, no matter which processor selection rule is followed. Note that, since the autopsy

method is conceptually different from the other task prioritization phases, we considered

it separately.

Upward ranking and optimistic costs. Fourteen different averaging schemes within the

upward ranking rubric were listed in Table 2.2. Ten of these can also be applied to the

optimistic costs since there is no need to distinguish the four “simple” averages in that

case. This gives us a total of 24 different task prioritization phases. Where necessary, we

will refer to a specific task prioritization scheme as A-U or A-O, where A is the name of the

averaging scheme and the letter after the hyphen indicates whether the average is used

for computing upward ranks (U) or applied to the set of optimistic costs (O); for example,

M-U means the task prioritization defined by using arithmetic mean averages for all graph

weights and then computing the upward rank. As a baseline for comparison, we also

considered a random task prioritization phase, defined by scheduling tasks according to

a topologically sorted list generated via a depth-first search algorithm from [80]. We call

it random in the sense that it can be viewed as a random sample from the set of all valid

topological sorts. Since it is computed without any consideration of the graph weights,

clearly we should hope that all of the other prioritizations are superior to this simple

alternative. Note that since runtimes were very similar for all of the task prioritization

phases—even including the time for computing the optimistic costs if necessary—this

comparison is concerned only with schedule quality.

First, we considered the Cholesky graphs. In general, most of the task prioritizations

did well, at least in comparison with the random phase. Figure 2.1 shows the range of SLRs

achieved by the two different approaches—upward ranking or optimistic costs—where

the shaded regions indicate the ranges between the best and worst average types for each
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graph. We see that the best prioritization phases of both types are always clearly superior

to the random phase but the worst, especially for the optimistic costs, are typically no

better. In fact, most of the averaging schemes for the optimistic costs usually did well;

the problem is that the preference-based R, D, NC and SD schemes were almost always

very bad when applied to the optimistic costs, with the odd exception that NC-O was the

outright best of all the prioritization phases for the graphs with nb = 1024. Moreover, we

see from the figure that the worst rankings are often precisely as bad as the random one.

This is no coincidence and reveals why they did not do well: our implementation uses the

random topological sort as an index, with ties broken according to their position in that

list. The worst phases are so similar to the random one because too many tasks are given

similar priorities. Aside from the unusually strong performance of NC-O for nb = 1024,

the upward ranking phases were generally superior to their optimistic cost counterparts,

especially for the smaller tile size.

Another interesting observation from Figure 2.1 is that the magnitude of the SLRs

differs significantly depending on the tile size and the number of GPUs available. Unfortu-

nately, it isn’t clear whether this is due to all of the prioritization phases doing objectively

better or worse in the different cases, or whether the problem is that the makespan lower

bounds used to compute the SLR are too optimistic for certain parameter choices (i.e., the

gap between the lower bounds and the optimal feasible makespan varies).

Figure 2.2 shows the mean percentage degradation (MPD) obtained by the 24 pri-

oritization phases for the Cholesky graphs. The most immediate takeaway is that the

preference-based averages for the optimistic costs were consistently much worse than

the others (again, with the exception of NC-O for nb = 1024). Beyond that, it is hard to

draw any firm conclusions as to which of the rankings is best. The standard HEFT M-U

phase did well overall, as did the MD-U, W/SW-U, HM/SHM-U and SD-U schemes. But,

as already noted, all of these were dominated by NC-O for nb = 1024. Indeed, considering

the entire set of 40 Cholesky factorization graphs, all of the rankings but R-U obtained

the best schedule at least once (including ties). This suggests that deciding which task

prioritization scheme is likely to give the best schedule is very much a local problem for

which the answer depends on a wide variety of factors.

Our conclusions were similar for the STG set. As can be seen from Figure 2.3, the few

overall trends that we observed for the Cholesky graphs also largely held across the set



64 | OPTIMIZING

(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 2.1: Schedule length ratios (SLRs) of task prioritization schemes for Cholesky
graphs with different combinations of s (number of GPUs) and nb (the tile size). Black line
indicates the random prioritization. Red shaded region represents the difference between
the best and worst upward ranking averaging schemes for each graph and the blue region
likewise for the optimistic cost averages. Recall that N is the number of tiles along both
axes of the matrix.
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(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 2.2: Mean percentage degradation (MPD) of task prioritization schemes for
Cholesky graphs with different combinations of s (number of GPUs) and nb (the tile
size). Solid red bars indicate upward ranking and striped blue bars optimistic cost aver-
ages; recall that the SB, SW, SHM and SGM averages are not defined for the optimistic
costs. Legends identify the three best schemes.
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as a whole. For example, R-O, D-O and SD-O were again the worst, although this time

NC-O, B-O and SB-U were equally as bad. There was also a more consistent advantage

to upward ranking rather than the optimistic costs; indeed, the former were better than

the latter for every single average type. The rankings which were usually among the best

for the Cholesky graphs also did well here. W-U achieved the smallest MPD, followed

by SW-U, SD-U, M-U and HM-U. The differences between them were relatively small,

however, reflecting the fact that again there was a lot of local variation and almost all of

the average types did well in some cases and badly in others.

This is highlighted by Figure 2.4, which shows the MPDs of the ranking schemes when

the STG set is broken according to different choices for the parameters s and β. Note

that each of the bar charts therefore represent subsets of 7200/8 = 900 graphs. We see

from the figure that although many of the same average types recur in the lists of the

best three rankings, it would be very difficult to anticipate the best average for a given

set of parameters. For example, HM-U is never among the top three except for s = 4 and

β = 1.0, when it is comfortably the best. Moreover, although its 1% advantage in MPD

compared to the next best may not seem like much, this represented a 75% probability of

returning a better schedule than M-U, the standard HEFT task ranking phase, suggesting

that it should be the default choice under such parameter regimes. We can certainly make

intuitive arguments as to why certain average types may perform well when, for example,

our target platform boasts many GPUs—but there are typically other averages for which

similar arguments can be made. This means that choosing which average type to use in a

priority-based heuristic is a decision that is best made on a case-by-case basis, perhaps

informed by benchmarking experiments similar to those conducted here.

Of all the subgraphs, the most divergent behavior is seen in Figure 2.4g: unlike every

other subset, the optimistic cost averages are better than their upward ranking counter-

parts almost across the board. Furthermore, the MPDs of every method are considerably

greater than for other parameter choices. In fact, the difference with the other subsets

is even more pronounced than the figure indicates. In particular, we found that, for

these graphs, all of the task prioritization schemes failed—i.e., returned a schedule whose

makespan was greater than the minimal serial time—a high percentage of the time. The

upward ranking schemes were particularly bad, all failing for at least 80% of the graphs,

whereas the optimistic cost schemes recorded failure rates of around 50%, explaining why



SIMULATION RESULTS | 67

Figure 2.3: Mean percentage degradation (MPD) of task prioritization schemes for entire
STG set. Solid red bars indicate upward ranking and striped blue bars optimistic cost
averages; recall that the SB, SW, SHM and SGM averages are not defined for the optimistic
costs. Legend identifies the three best schemes.

they performed better on average. This might lead one to suspect that optimistic costs

are more robust against failures. However, failure rates were also extremely high for the

graphs in Figure 2.4h—and in that case the corresponding figures were about 60% for the

upward ranks and 70% for the optimistic costs.

Although there were a small (usually ≈ 1%) percentage of failures for β= 1, the over-

whelming majority occurred for β= 10, indicating that high communication is the biggest

risk factor. In fact, the root cause is the EFT processor selection rule, which does not

consider future communication penalties that may be incurred by greedy choices. This is

true for all values of β; the problem is simply more pronounced for the largest because

the communication penalties are proportionally larger in that case. Given this, and the

fact that failure rates were high for all of the many different prioritization schemes that

we considered, it seems unlikely that any alternative task prioritization alone can fully

remedy this issue, although perhaps this should be investigated in the future.
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(a) s = 1, β= 0.01. (b) s = 4, β= 0.01.

(c) s = 1, β= 0.1. (d) s = 4, β= 0.1.

(e) s = 1, β= 1.0. (f ) s = 4, β= 1.0.

(g) s = 1, β= 10.0. (h) s = 4, β= 10.0.

Figure 2.4: Mean percentage degradation (MPD) of task prioritization schemes for STG
set with different combinations of s (number of GPUs) and β (the CCR). Solid red bars
indicate upward ranking and striped blue bars optimistic cost averages; recall that the SB,
SW, SHM and SGM averages are not defined for the optimistic costs. Legends identify the
three best schemes.
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Figure 2.5: Reduction in makespan achieved by applying the autopsy method to HEFT
schedules for Cholesky graphs with different combinations of s (number of GPUs) and
nb (the tile size). Black horizontal line indicates equality, so that data points beneath
represent a negative reduction—i.e., the new schedule is worse than the old one.

Autopsy. Unlike the averaging-based task prioritization schemes, the autopsy method

works by taking an initial schedule as input. To determine if the method is viable, we

considered only schedules computed via the standard HEFT algorithm—i.e., M-U task

prioritization phase with EFT processor selection rule—for this step. Figure 2.5 shows

the makespan reduction achieved by the autopsy method, as a percentage of the original

schedule makespan, for the Cholesky graphs. The big takeaway is that the majority of the

time there were no reductions and the autopsy method actually led to a worse schedule

than the original. This is surprising: one would expect that more “accurate” upward ranks

would lead to superior performance. Furthermore, increasing the number of GPUs did

not seem to improve performance either; again, this may confound expectations, given

that the assignment followed in the selection phase is in some sense less restrictive.

The autopsy method actually did well for the smallest Cholesky factorization graphs,

so we repeated the experiments for the graphs from the STG set (which have n = 1000

tasks) to establish if size is indeed a contributing factor. Figure 2.6 illustrates the makespan

reductions for different values of s (the number of GPUs) and β (the CCR). Note that,
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although it did on average improve the HEFT schedule for β= 10, the autopsy method

still failed for a very high percentage of such graphs, so that data is omitted. We see from

the figure that for some parameter choices the autopsy method is considerably more

likely to improve on the HEFT schedule—but for others it is again likely to produce a

worse schedule. It is not obvious why this is the case. One possible explanation is that

strictly following the previous assignment is too inflexible unless processor contention

can be safely ignored. This would help to explain why performance deteriorated as the

Cholesky graphs grew (more tasks leading to greater contention) and why the probability

of producing a better schedule was higher for the randomly generated graphs with s = 4.

But it is not obvious how this would account for the fact that, when s = 1, the autopsy

method drastically improved for β= 1 compared to smaller values. Whatever the cause of

its unexpected behavior, it should be noted that, when the autopsy method did do well, it

was more likely to improve on HEFT than even the best of the alternative average types.

This suggests that, when we suspect it may perform well (e.g., there are lots of GPUs),

it is worthwhile, although the effective doubling of the runtime must of course also be

considered.

2.5.4 Processor selection

Five processor selection rules were described in Section 2.4.2: binary lookahead (BL), the

two variants of optimistic lookahead (OL-I and OL-II), GPU communication penalty (GCP),

and harmonic average lookahead (HAL). We compared these with two other selection

rules: EFT, the standard greedy processor selection rule, and NC, the rule used in the

HEFT-NC heuristic [114]. For the latter, we used the suggested cross threshold X = 0.3.

As in the previous section, we took a modular approach and used the M-U prioritization

phase—upward ranks with (arithmetic) mean averages—in all cases. One hopes that a

good processor selection rule will be more effective than a bad one, no matter how the

task priorities are computed; exploratory experiments suggested that this was largely true

so long as the different task prioritization phases performed similarly well, reinforcing the

need to optimize both phases of the priority-based framework.

For the Cholesky factorization DAGs, we found there was little difference between any

of the processor selection rules for tile size nb = 1024, no matter how many GPUs the

target platform hosted; the percentage degradation for each was less than 1% on average
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(a) s = 1, β= 0.01. (b) s = 4, β= 0.01.

(c) s = 1, β= 0.1. (d) s = 4, β= 0.1.

(e) s = 1, β= 1.0. (f ) s = 4, β= 1.0.

Figure 2.6: Reductions in makespan achieved through the autopsy method for STG set
with different combinations of s (number of GPUs) and β (the CCR). Black horizontal lines
indicate equality so that values above imply superior performance. Legends indicate the
mean percentage reduction and the percentage of graphs for which the autopsy method
gave a better schedule. Subsets with β = 10 are omitted because both the HEFT and
autopsy schedules were objectively poor.
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and almost never greater than this. Overall, the GCP rule was most likely to be the best but

the advantage over the others was very small. This similar performance is likely because of

the greater task acceleration ratios and relatively small communication delays for this tile

size: most tasks are assigned to the GPUs in any event and the processor selection rules

considered here do not distinguish between processors of the same type.

Results were more interesting for the smaller tile size. Figure 2.7 shows how the

schedule length ratio varied with N , the number of tiles along both axes, for each rule. We

see some variable behavior; for example, HAL and GCP are among the worst for smaller

graphs but always the best for larger ones. In fact, the standard EFT rule was actually the

best on average across the entire set since it was the most consistent, always falling in the

middle of the pack. With regard to the two optimistic lookahead variants, there is more

difference between them than we may expect, given how similar they are, but the larger

issue is that both are inferior to EFT overall. Likewise, the NC rule does not appear to

actually improve on EFT either, despite being specifically designed for that purpose. This

could well be because the cross threshold we use is not suitable for either platform, but

without conducting an exhaustive tuning step beforehand it isn’t clear what value should

be used, a clear downside of this approach. The BL rule is at least competitive with EFT

but given the greater complexity one would hope for more clear-cut gains; for our own

implementation, we found that runtimes could be more than 100 times longer than the

other selection rules (which were very similar to one another).

We repeated the comparison for the STG set, although unfortunately runtime con-

straints prevented our including the BL rule since it was so much more expensive than

the others. Figure 2.8 presents the mean percentage degradation (MPD) achieved by each

selection rule. Note that unlike in Figure 2.6 we have included the data for β= 10 here.

However, it was still the case that all of the selection rules did badly, as can be seen by

the fact that the MPD of all the rules was greater than 100% for s = 1. Considering all the

graphs with β= 10, the failure rate for most of the rules was still around 65–70%; OL-II

was the best at about 45% but that is still unacceptably high. Altogether it seems safe

to conclude that none of the selection rules considered here really perform well when

communication is high. Since the minimal serial time (MST) is usually close to the optimal

schedule makespan in such cases, a simple alternative rule would be to follow OL-II until

the point at which the current makespan exceeds the MST and then reschedule all tasks
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(a) s = 1.

(b) s = 4.

Figure 2.7: Schedule length ratios (SLRs) of processor selection rules for Cholesky factor-
ization graphs with tile size nb = 128 and different values of s (the number of GPUs).
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on the fastest processor instead. This would at least avoid failures, although it would only

actually improve on the best serial schedule just over half the time. It would be useful in

the future to investigate whether more sophisticated techniques such as task duplication

are capable of more effectively preventing failures (see next section).

We see the same kind of granularity in Figure 2.8 that we have seen in previous sections.

For example, GCP was the best rule for the two smallest β values but was the worst for

β= 1. The default EFT rule performed well and (ignoring β= 10) was always either the

best or second best. NC was much worse than the others for the two smallest β values and

mediocre otherwise. HAL was also typically among the worst. Apart from β= 10, OL-II was

consistently worse than OL-I, perhaps because, although the bound doesn’t technically

hold, the use of average values in OL-I more accurately reflects future schedule costs.

2.6 CONCLUSIONS AND FUTURE WORK

At a high level, our most abiding conclusion from the investigation described above is

that there is no one-size-fits-all task prioritization phase or processor selection rule that

should always be used for priority-based scheduling on accelerated platforms. Rather,

which is most suitable depends on many different factors, such as the number of GPUs

and the relative amounts of computation and communication in the task graph. Aside

from this overarching impression, we also drew the following more specific conclusions.

1. With regard to which average types should be used for computing task priorities, our

experience largely echoes that of Zhao and Sakellariou [147]: significant gains can be

made by choosing the best average type but actually identifying which will actually

be the best for a given DAG and target platform is difficult. A few overall trends

were apparent. For example, upward ranking was generally superior to averaging

optimistic costs. Considering the experiments as a whole, the best task prioritization

phases on average were W/SW-U, M-U and SD-U. However, alternatives were clearly

superior in specific situations, such as HM-U for the randomly generated DAGs with

s = 4 and β= 1.

2. The autopsy method appears to have a high probability of improving an existing

schedule when there are an adequate number of GPUs and the task graph is not too
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(a) s = 1, β= 0.01. (b) s = 4, β= 0.01.

(c) s = 1, β= 0.1. (d) s = 4, β= 0.1.

(e) s = 1, β= 1.0. (f ) s = 4, β= 1.0.

(g) s = 1, β= 10.0. (h) s = 4, β= 10.0.

Figure 2.8: Mean percentage degradation (MPD) of processor selection rules for STG set
with different combinations of s (number of GPUs) and β (the CCR).
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large. For example, it successfully returned a better schedule than HEFT for about

75% of the randomly generated graphs when the target platform comprised 4 GPUs.

However, it appears to actually be counterproductive for large graphs and when

there are few GPUs. We suspect that this is due to rigidly following the previous

task assignments when processor contention becomes relatively more important;

further investigation with large task graphs for applications other than Cholesky

factorization may be useful in the future.

3. The default EFT processor selection rule does well when communication costs are

relatively small but can struggle as they increase. When communication is high, this

can even lead to entirely useless schedules. Unfortunately, with the partial exception

of OL-II, none of the alternative selection rules considered here were capable of

compensating in such cases either.

4. The simple new selection rule GCP outperformed EFT for the largest Cholesky

graphs and the randomly generated graphs when communication costs were rela-

tively low. HAL also did well for the largest Cholesky graphs but was less impressive

in all other cases.

5. The NC rule did not appear to be superior to, or even competitive with, EFT or any of

the other rules considered, contradicting results in [114] to an extent, although it is

noted there that performance may vary depending on the cross threshold parameter;

results may well be more positive if guidelines for selecting a good cross threshold

can be established.

6. OL-I, the processor selection rule used in PEFT [12], was generally superior to

the modified version OL-II proposed here when communication costs were low,

although still worse than EFT. On the other hand, OL-II was more effective when

communication was high, presumably because it uses true lower bounds on the

remaining schedule costs and is therefore a more accurate “correction” in such

cases.

In addition to those topics identified above, we suggest that the following may be interest-

ing directions for future research.
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1. Alternative communication models should be considered. An obvious choice would

be to investigate the effect of varying the size of the GPU-GPU communication

delays relative to the delays between CPU and GPU, since they were assumed to be

identical here but GPU-GPU delays can in theory be much smaller. Furthermore,

contention for communication resources should also be taken into account.

2. Including energy costs when scheduling is increasingly vital, so that is a natural

next step. One straightforward approach suggested earlier would be to combine

the autopsy method with existing rescheduling heuristics such as LOSS [108], but

ideally the latter step should be optimized specifically for CPU/GPU as well.

3. Task duplication can often be useful in priority-based heuristics, both for reducing

the makespan [76] and improving reliability [125]. Moreover, it may be useful in

reducing the failure probability when communication is high. As noted in Section

2.3, the practical issue tends to be controlling the amount of duplication so that

the application runtime (and energy expenditure) remains low. It should therefore

be investigated whether the unique properties of accelerated platforms can be

exploited to reduce the additional costs.



CHAPTER 3

THE CRITICAL PATH IN

HETEROGENEOUS SCHEDULING

We saw in the previous chapter that there are many different ways that the critical path can

be estimated in heterogeneous scheduling. Furthermore, different scheduling heuristics

use these critical path estimates in different ways. For example, in HEFT, critical paths

from all tasks to the sink are calculated in order to prioritize the tasks, whereas in CPOP

a single path which is expected to be critical is identified and the tasks which lie on

it are all scheduled on the same processor. In this chapter, we extend ideas that were

introduced previously for accelerated platforms and consider many different ways that the

critical path can be approximated for generic—i.e., not just CPU and GPU—heterogeneous

scheduling problems. We cannot expect that any of the alternatives will always be superior

to others, so we attempt to identify through simulation which choices are most useful in a

wide variety of different situations.

3.1 GENERIC SCHEDULING MODEL

As in the previous chapter, here we consider offline scheduling only and focus on min-

imizing the schedule makespan. Most of the assumptions from Section 2.2.1 therefore

still hold. However, we now assume that there are multiple different processor types,

rather than just CPUs and GPUs. Therefore we will use the more general notation that

was introduced in Section 2.2.1, rather than that specialized for accelerated platforms.

For example, we denote the computation time of task ti on processor pa by W a
i and the

78
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communication delay between ti and tk when they are scheduled on processors pa and

pb by W ab
i k . Moreover, the following changes should also be noted.

1. Although we retain most of the terminology, it may have a broader definition than

before. For example, we still use the term processor to refer to any resource that

can execute tasks, but we do not make any assumptions about what it physically

represents. Depending on the context, a processor could therefore be anything from

a single thread to an entire computing cluster (e.g., in cloud computing).

2. No assumptions are made regarding how related the execution times on different

processors are to one another. In our simulations we will treat relatedness as a

parameter and consider different cases.

3. We again follow the macro-dataflow model [140] for communication: delays are

assumed to be zero between a processor and itself, the network is fully connected

and contention for communication resources is not considered. Communication

delays are again also assumed to be symmetric, so that W ab
i k =W ba

i k for all pairs of

distinct processors pa and pb .

To illustrate the differences between methods for estimating the critical path, throughout

this chapter we use a simple example, namely the scheduling of the small graph shown in

Figure 3.1 on a target platform comprising two processing resources P1 and P2.

3.2 USES OF THE CRITICAL PATH

The most common way that the concept of the critical path is used in heterogeneous

scheduling is to compute priorities for tasks. In particular, tasks which are expected to lie

on critical paths are given higher priority than others. Upward ranking from HEFT is the

most prominent example: the priority of a task is defined as the estimated critical path

length from the task to the sink (inclusive). This approach has proven successful but, as

we saw in the previous chapter, the problem is that there are many different ways that the

path lengths can be approximated and it typically isn’t clear beforehand which will give the

smallest schedule makespan for a given DAG and computing platform. Therefore in the

following section we will describe multiple methods, before evaluating their performance

in HEFT through simulation in Section 3.4.
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Figure 3.1: Example graph with labels representing computation and (nonzero) communi-
cation costs on a two-processor target platform. The bracketed red labels near the vertices
represent the task execution times on the two processors in the form [W 1

i , W 2
i ] and the

edge weights represent the communication cost between tasks when they are scheduled
on different processors; note that zero is therefore always an alternative edge weight but
is omitted for clarity. Despite its simplicity, there are several different ways that we can
define the critical path of this DAG.
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Once task priorities have been computed, HEFT schedules them in this order on the

processors expected to complete them at the earliest time. But other heterogeneous

scheduling heuristics use priorities in different ways. For example, Hybrid Balanced

Minimum Completion Time (HBMCT) [106] and Iso-Level Heterogeneous Allocation (ILHA)

[17] both create sets S1,S2, . . . of mutually independent tasks such that the lowest priority

task in S1 has a higher priority than all tasks in S2, and so on. These sets are then scheduled

in order using some heuristic for scheduling independent tasks. In the future it may be

worth investigating if the same trends we observe for HEFT also hold for heuristics such as

HBMCT and ILHA. However we only use HEFT in our simulations here since it represents

arguably the most natural way to use task priorities when scheduling (i.e., schedule the

highest priority task on the processor expected to complete it first).

In addition to computing priorities, another use of the critical path is exemplified by

the CPOP heuristic. Specifically, all of the tasks along the expected critical path (through

the entire DAG, from source to sink) are scheduled on the single processor that minimizes

the sum of their execution times; the motivation being to minimize the critical path length

by ensuring there are no communication delays along it. Again, the issue here is how we

actually determine the path which is most likely to be critical (or which it is most useful to

treat as critical). CPOP uses essentially the same method as HEFT to do this, estimating

the length of the longest path from each task to the sink (inclusive) in the same way and

then adding these to the corresponding estimates from the source to the tasks (exclusive)

in order to get estimates of the longest paths from source to sink which pass through each

task. The maximal such longest path is then assumed to be critical. Since the idea of

treating the critical path separately from the rest of the DAG—which we will refer to as

critical path assignment—is somewhat different from using critical paths for priorities, in

this chapter we will investigate whether the methods for approximating the critical path

that perform well in one context also do well in the other.

(Note that CPOP also uses critical path estimates for priorities in the same way as HEFT,

with the exception that the priority of a task represents the estimated length of the longest

path from source to sink which passes through the task, not just the longest path from

that task to the sink. However, when we evaluate different ways to approximate the critical

path for assignment we will always use the same task priorities as in the standard HEFT

algorithm; the idea being that we want to evaluate which methods for approximating the
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critical path are most useful in the two different contexts separately. Furthermore, no

matter how the critical path is approximated, we consistently found when prioritizing

tasks that using the “upward” path length estimate—i.e., from the task to the sink—only

was more effective than the sum of the upward and downward path lengths. This makes

sense: by the time a task is ready for scheduling, the downward part of the graph has

already been scheduled and only the upward critical path estimate path is still relevant.)

3.3 APPROXIMATING THE CRITICAL PATH

Since there is typically no path that will always be critical for any possible labeling of the

graph, in practice we need to find some useful approximation instead. Below, we describe

multiple different ways this can be done.

3.3.1 Averaging

The most straightforward method is to scalarize the graph weights using some kind of

average and then compute path lengths in the usual way for graphs with scalar weights

(i.e., dynamic programming). As we saw in the previous chapter, this is generally a useful

way to define critical path lengths in priority-based heuristics such as HEFT, which uses

arithmetic mean averages by default. The problem is that different average types can lead

to different critical paths estimates—and it is very difficult to determine which average

will give the smallest makespan for a specific problem beforehand. For example, Figure 3.2

shows how the 14 different averaging schemes defined in Table 3.1—extensions of those

from Table 2.2—lead to four possible critical paths for the graph from Figure 3.1. Moreover,

as shown in Table 3.2, different averages result in different task priority lists when they are

used to compute upward ranks in HEFT—and therefore different schedule makespans.

In this case, we see that the W, SW, D and SD averages give the best schedule—which for

this small graph it can be verified through exhaustive enumeration is actually the optimal

schedule—but it is very difficult to justify any good reason we should anticipate this result.

A comment on terminology: although we refer to the resulting path as critical, for

many of these averages the motivation is not to identify the path that will be longest.

For example, as noted in the previous chapter, the intuition behind the R, D, NC and SD

averaging schemes is to find the path with the strongest preference for processors of a
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Table 3.1: Extensions of the averaging schemes from Table 2.2 for generic heterogeneous
scheduling, defined by how they compute the average weight of a task ti and edge (ti , tk ).

Average wi wi k

M (2.2) (2.3)
MD Median of {W a

i }a=1,...,q Median of {W ab
i k }a,b=1,...,q

B mina W a
i 0, if ri := argmina W a

i = rk , else W ri rk
i k

SB mina W a
i 0

W maxa W a
i 0, if ri := argmina W a

i = rk , else W ri rk
i k

SW maxa W a
i max{W ab

i k }a,b=1,...,q

HM (2.15) (2.16)
SHM (2.15) 0
GM Geometric mean of {W a

i }a=1,...,q Geometric mean of {W ab
i k +1}a,b=1,...,q

SGM Geometric mean of {W a
i }a=1,...,q 0

R maxa W a
i /mina W a

i 0
D maxa W a

i −mina W a
i max{W ab

i k }a,b=1,...,q

NC D/R 0
SD Std. dev. of {W a

i }a=1,...,q Std. dev. of {W ab
i k }a,b=1,...,q

certain type. However, we will continue to refer to the computed paths as critical since

the underlying motivation is always that the identified path is in some sense the most

important.

3.3.2 Bounds

It is interesting to note that, for many average types, the expected critical path length may

be greater than the optimal schedule makespan. For example, using the M average for

the graph from Figure 3.1 gives an expected critical path length of 39 (compared to an

Table 3.2: Task priority lists corresponding to different averaging schemes and the resulting
HEFT schedule makespans for the graph from Figure 3.1. In case of identical priorities,
the task with the higher numerical index was given higher priority.

Priority list Averages Makespan

(1, 2, 4, 3, 5, 8, 6, 7, 9) M, MD, SB, GM 41
(1, 2, 4, 3, 5, 6, 8, 7, 9) B 41
(1, 2, 4, 3, 5, 6, 7, 8, 9) W, SW, D 35
(1, 2, 4, 3, 5, 8, 7, 6, 9) HM 38
(1, 4, 2, 3, 5, 8, 6, 7, 9) SHM, SGM 41
(1, 3, 4, 2, 5, 6, 8, 7, 9) R 37
(1, 4, 2, 3, 5, 8, 6, 9, 7) NC 41
(1, 2, 4, 3, 5, 7, 6, 8, 9) SD 35
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(a) M, MD, B, SB, W, SW, GM. (b) HM, D, SD.

(c) SHM, SGM, NC. (d) R.

Figure 3.2: Critical paths for the graph from Figure 3.1 estimated using the indicated
averaging schemes. We see that different averages can lead to very different critical paths.



APPROXIMATING THE CRITICAL PATH | 85

optimal schedule makespan of 35). This is not truly problematic—as noted above, many

of the average types do not even attempt to achieve this—but it is notable in light of the

fact that the critical path length usually represents a lower bound on the makespan, so

that minimizing the former gives the most scope to minimize the latter. It may therefore

be useful to compute a lower bound on the critical path length, since this would also be a

lower bound on the makespan of any schedule.

The most straightforward approach is to just set all of the weights to their minimal

values, as in the SB averaging scheme, and then compute the longest paths through

the resulting scalar-weight graph. For the example, this gave a lower bound of 20, as

compared to the optimal makespan of 35. The problem with this method is that it is too

optimistic: edge weights are always set to their smallest values, even if this is impossible

given the weights assigned to the tasks connected by the edge. The B average attempts to

compensate for this but is too restricted by assuming that all tasks are scheduled on their

fastest processor; in the example, the corresponding critical path length was 43, which is

actually greater than the optimal makespan.

We can however easily find a tighter bound on the critical path length using recursion.

In particular, let `a
n = W a

n for all a = 1, . . . , q , then work up through the task graph and

compute

`a
i =W a

i +max
k∈Γ+i

(
min

b=1,...,q
{W ab

i k +`b
k }

)
(3.1)

for all i = n − 1, . . . ,1. Intuitively, `a
i represents the shortest possible critical path that

can be achieved assuming that task ti is scheduled on processor pa . A lower bound on

the critical path length from task ti to the sink is then given by `i := mina `
a
i , so that in

particular `1 is a bound on the critical path through the entire DAG—and therefore the

optimal makespan. For the graph from Figure 3.1, we find that we have `1 = 28, which is a

tighter bound than that obtained through the SB averaging scheme. Moreover, defining

the priorities of all tasks in HEFT as their ` values results in a schedule with makespan

35—i.e., an optimal one.

Note that the `a
i are essentially just the optimistic costs from the PEFT heuristic [12],

although, as discussed in Section 2.3.2, the actual communication delay W ab
i k is used in

the minimization rather than an average value since that is the only way to get a true lower

bound. Moreover, as also stated in the previous chapter, the cost of computing the `a
i is

only O(n2)—i.e., the same complexity in n as the averaging method.
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If we need to identify an actual path for assignment which corresponds to the critical

path lower bound, this can be done in a straightforward manner by working forward

through the DAG after the ` values have been computed and successively determining

which child task gives the desired path length. Alternatively, we could simply keep track of

the maximizing child task when computing the values using Eq. (3.1). At any rate, for the

example we find that the path corresponding to the lower bound is (1, 2, 5, 8, 9), which

in this case is actually the same identified by the B/SB averaging schemes, as shown in

Figure 3.2.

Just as the method described above extends the motivation behind the B/SB averages,

we could also extend the W/SW averages and find upper bounds on the critical path

lengths. This can be done by simply replacing the inner minimization in (3.1) with a

maximization over the processors instead—i.e., recursively computing

za
i =W a

i +max
k∈Γ+i

(
max

b=1,...,q
{W ab

i k + zb
k }

)
(3.2)

for all tasks ti and processors pa , and then defining zi = maxa za
i . For the example, this

gives an upper bound on the critical path through the entire DAG of z1 = 57, which is

the same as that obtained by the W averaging scheme (and less than that of SW, which

therefore represents an infeasible task assignment). It is difficult to intuitively justify why

we might prefer to use an upper bound on the critical path length since, unlike a lower

bound, it does not induce a corresponding bound on the schedule makespan. However,

given the strong performance of the W/SW averages in the previous chapter it seems

sensible to at least consider it experimentally.

3.3.3 Stochastic interpretation

By default HEFT uses arithmetic mean averages to scalarize the weights of the DAG and

approximate the critical path. One way to interpret this approach is that since the actual

values the weights will take at runtime are unknown, we are essentially quantifying the

likelihood that they will take certain values. In other words, the actual weight that a task ti

takes at runtime is treated as a discrete random variable (RV) wi which takes values from

the set {W a
i }a=1,...,q according to some approximated probability mass function (pmf)—

and similarly for the actual weight wi k ∈ {W ab
i k }a,b=1,...,q of a generic edge (ti , tk ). Using

arithmetic mean values implies that all weights are equally likely, so that the pmf of wi is
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defined by

mi (W a
i ) :=P[wi =W a

i ] = 1

q
, ∀a = 1, . . . , q, (3.3)

and the pmf of wi k by

mi k (W ab
i k ) :=P[wi k =W ab

i k ] = 1

q2
, ∀a,b = 1, . . . , q. (3.4)

Note that in this case the expected values of the task and edge weight variables are therefore

given by

E[wi ] =
q∑

a=1
W a

i mi (W a
i ) = 1

q

q∑
a=1

W a
i = wi ,

E[wi k ] =
q∑

a=1

q∑
b=1

W ab
i k mi k (W ab

i k ) = 1

q2

∑
a,b

W ab
i k = wi k ,

where wi and wi k are as defined by Eqns. (2.2) and (2.3), respectively. This means that

setting all DAG weights to arithmetic mean values and then computing upward ranks

of the corresponding graph with scalar weights is equivalent to setting un = E[wn], then

moving up the DAG and recursively computing

ui = E[wi ]+max
k∈Γ+i

(
uk +E[wi k ]

)
(3.5)

for all other tasks. Let Gs be the counterpart of the graph G with stochastic task and edge

weights. Clearly, if the weights of Gs are RVs, then the length of the critical path between a

task ti and the sink, which we will denote by Li , must itself be an RV. The question that

arises is: what is the relationship between ui and Li ? In fact, it has long been known that

ui is a lower bound on the expected value of Li —i.e., we have ui ≤ E[Li ] for all i = 1, . . . ,n

[55], [79]. This prompts a follow-up question: could Li , or its expected value, be more

useful than ui ?

The Monte Carlo method. Unfortunately, computing the distribution of the longest path

through a DAG with stochastic weights, or even just its expected value, is a very difficult

problem, as we will see in Chapter 4, which is devoted to this topic. However, it suffices

to say here that Monte Carlo (MC) simulation is currently the gold standard method for

approximating the longest path distribution—at least when the computational cost is

ignored and the weight distributions are known. In this context, MC simulation refers

to realizing the weights of the DAG according to their pmfs and computing the longest



88 | CRITICAL PATH

path of the resulting scalar-weighted graph. This is done repeatedly, giving a set of longest

path instances whose empirical distribution function is a good approximation of the true

distribution function, assuming that we take adequately many realizations.

The downside of the MC method is that it may be expensive: we need to repeatedly

realize all n + v ≈ n2 weights of the DAG and compute the longest path each time, itself

an n2 operation. (This is why we focus in the next chapter largely on devising cheaper

alternatives!) Assuming that we take R realizations of the graph weights, we would perhaps

expect the MC method to take R times longer than computing upward ranks for averaged

weights since in that case we only need to compute the longest path through a single graph

with fixed weights. In our own implementations, however, we found that the ratio between

the two runtimes was rarely so extreme because the MC method can largely be vectorized;

this will be discussed at greater length in the next chapter. At any rate, although additional

comments will be made about runtimes later, we are more interested here in establishing

whether tightening the bound on E[Li ] is useful at all.

Using the data. Through the MC method, we can generate many different realizations

of the task graph. For each task we therefore have a set of realized critical path lengths to

the sink. For a generic task ti , assume that the relevant path lengths have sample mean µi

and sample standard deviation σi . The question is, what is the best way to use this data

to compute a priority for ti ? The obvious choice is to define the priority as the sample

mean of the relevant path length data. Since µi ≈ E[Li ], this is the natural extension of

the upward ranking. However, as noted by Van Slyke [133], when prioritizing two or more

tasks it is arguably most sensible to compare their criticalities, the probability that each

will lie on a critical path (through the entire DAG). This seems reasonable, although, as

elucidated by Williams [139], the underlying intuition can be deceptive. At any rate, since

we can easily approximate the criticality of a task by dividing the number of times it lay on

a path that was observed to be critical during the MC by the total number of realizations,

we consider this alternative in our experimental comparison later.

(Note that defining task priorities as their estimated criticality does not guarantee that a

parent task’s priority is always greater than a child’s—i.e., the precedence constraints could

be violated. However, as in the previous chapter, this can be remedied by simply selecting

the task with the highest priority from those that are currently ready for scheduling.)
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As for tasks, we can define the criticality of a path as the probability that it will become

critical—i.e., longer than all other paths [84]. If we wish to identify a complete path through

the DAG for assignment, as in CPOP, the path with the highest criticality would appear

to be the natural choice. Identifying such a path analytically is a difficult problem, as we

will see in the next chapter, but we can simply approximate it by using the path which was

most frequently observed to be critical for the realized graphs during the MC. Therefore

we will also evaluate the utility of this MC-based method for approximating the critical

path.

Harmonic pmfs. Thus far we have implicitly assumed that the pmfs of the task and edge

weights reflect arithmetic mean averages. As noted in Section 2.4.1, one issue with this

approach is that all processor selections are regarded as equally likely, whereas we would

expect that tasks are more likely to be scheduled on processors with smaller execution

times. To remedy this, we could define the weight pmfs to represent the harmonic mean

(HM) averaging scheme instead. In particular, let

hi =
q∑

a=1

1

W a
i

and define an alternative set of pmfs by

m̂i (W a
i ) = 1

W a
i hi

, ∀i = 1, . . . ,n and a = 1, . . . q, (3.6)

and

m̂i k (W ab
i k ) = m̂i (W a

i ) ·m̂k (W b
k ) = 1

W a
i W b

k hi hk
, ∀i ,k, a,b. (3.7)

Example. Since we described four different ways to compute task priorities based on the

stochastic interpretation of the problem outlined above, we consider the simple graph

from Figure 3.1 in order to illustrate how they work. The four methods are each referred to

by a string X-Y, where X indicates how the MC data is used to compute task priorities and

Y which pmfs were used when realizing the weights. The two choices for X are:

• EV (for expected value), which indicates that we define task priorities as the sample

means of their realized critical path lengths (from the task to the sink);

• CR (for criticality), which represents using the observed criticality of tasks for priori-

ties.
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Table 3.3: HEFT schedule makespans corresponding to different methods of using MC
data to compute priorities for the graph from Figure 3.1. In case of ties, the task with the
higher numerical index was given higher priority.

Method Priority list Makespan

EV-A (1, 2, 4, 3, 5, 8, 7, 6, 9) 38
EV-H (1, 2, 4, 3, 5, 7, 6, 8, 9) 35
CR-A (1, 2, 4, 3, 5, 8, 7, 6, 9) 38
CR-H (1, 2, 4, 3, 5, 8, 7, 6, 9) 38

For Y, the two options are A (arithmetic), which denotes using pmfs (3.3) and (3.4) for

the MC sampling, or H (harmonic) which indicates that the pmfs (3.6) and (3.7) are used

instead. In both this example and the investigation detailed in Section 3.4, we always

did 1000 MC realizations for both pmf choices. As we will see in the next chapter, this is

usually adequate to obtain highly accurate estimates of the expected value of the critical

path length. Comments will be made later about the time complexity implications of this

choice. Table 3.3 presents the task priority lists, and HEFT schedule makespans obtained

by using those lists, for the four methods. We see that EV-H successfully returns the

optimal schedule and all the others at least better the makespan of the standard HEFT

algorithm (41).

With regard to what we have dubbed critical path assignment, we also recorded which

paths (through the entire DAG) were critical and how often this the case. Table 3.4 contains

all the paths which were observed to be critical for 1000 realizations of the graph, with both

A and H pmfs, and how often this was the case. We see that three of the possible critical

paths from Figure 3.2 are present, in addition to three others. Since there are only nine

different paths through this graph, two-thirds of them were therefore critical at least once.

For both choices of pmfs, path (1, 2, 5, 8, 9) was most frequently critical—i.e., we assume it

has the greatest criticality. However, it was only actually critical about 30% of the time—in

other words, there was a 70% probability that it was not critical for any single realization

of the graph. This perhaps suggests that critical path assignment is not well-suited for this

example.
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Table 3.4: Paths which were observed to be critical, and how frequently, for 1000 MC
realizations of the graph from Figure 3.1.

Path PMF = A PMF = H

(1, 2, 5, 6, 9) 137 84
(1, 2, 5, 7, 9) 193 256
(1, 2, 5, 8, 9) 290 302
(1, 4, 5, 6, 9) 70 34
(1, 4, 5, 7, 9) 133 164
(1, 4, 5, 8, 9) 177 160

3.4 SIMULATION RESULTS

To gauge how the different methods of defining critical paths perform empirically, we

used a custom software simulator, the source code for which can be found at the Github

repository for this thesis1. This software is very similar to that used in the previous

chapter, with the exception of the changes stated in Section 3.1—most notably, the fact

that arbitrarily many different processors are now possible, not just two different types.

3.4.1 Graphs

As before, we used two sets of task graphs in this experimental investigation, one based on

Cholesky factorization and the other based on randomly generated topologies taken from

the STG [128]. However, the manner in which we generated computation and commu-

nication costs differs from the previous chapter since we now wish to consider arbitrary

heterogeneous computing environments. Broadly speaking, generating useful artificial

costs for scheduling simulations is a difficult problem and many different methods have

been proposed in the literature; a good overview can be found at [32]. The methods that we

decided to use are described below, but it should be emphasized that there are alternatives

that could have been used instead.

Cholesky DAGs. Once again we constructed ten different topologies corresponding to

the Cholesky factorization of an N ×N tiled matrix, for N = 5,10, . . . ,50. To set the weights

of these graphs, we broadly followed the noise-based algorithm described in [32], with

some modifications due to the specific structure of Cholesky factorization DAGs and

1https://github.com/mcsweeney90/thesis-code

https://github.com/mcsweeney90/thesis-code
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the additional need to generate communication costs. The method works by sampling

costs randomly from gamma distributions. Expected values of these distributions are

typically—but not always—assumed here to be one, so that they are specified by their

coefficients of variation (the ratio of the standard deviation and the expected value). The

motivation behind this approach is that small coefficients of variation typically represent

low heterogeneity in the costs, whereas larger values indicate greater heterogeneity. Note

that other distributions could be used instead, but gamma distributions are easy to work

with and are often used for modeling task execution times in heterogeneous scheduling

[19], [32].

The cost-setting algorithm proceeds as follows. First, each of the q processors is

assigned a “speed” by sampling randomly from a gamma distribution with unit mean and

coefficient of variation vproc. Denote the speed of processor pa by Sa . Next, calculate the

“size” of each task by assuming that these correspond to the number of flops—floating

point operations—required for the kernel type. Once a tile size nb has been specified,

these are well-known: GEMM tasks require 2nb3 flops, POTRF nb3/3+nb2/2+nb/6, SYRK

nb2(nb +1), and TRSM nb3 [103]. Rather than requiring an input tile size, we normalize

the task sizes according to the constant multiplying the nb3 term, so that GEMM is assigned

a relative size 2, POTRF 1/3, SYRK 2, and TRSM 1. For all i = 1, . . . ,n, let Ti denote the kernel

type of task ti , and define a function F (Ti ) which returns the relative size of kernels of

type Ti , so that, for example, F (Ti ) = 1/3 if Ti = POTRF. Under a fully related scheduling

model, the computation time of task ti on processor pa would then simply be given by

W a
i = F (Ti )/Sa . However, we instead define

W a
i = R(Ti )×F (i )/Sa ,

where, for each kernel type k, R(k) is sampled from a gamma distribution with unit mean

and coefficient of variation vrel, R(k) ∼ Γ(1/v2
rel, v2

rel). The idea here that is the R(k) value

roughly characterizes how related the computation times are for that kernel; if R(k) = 1,

then they are perfectly related, whereas much larger or smaller values indicate wider

variability. Note therefore that large values of vrel correspond to less related computation

costs than smaller ones.

Generating communication costs is somewhat simplified since we assume that all

tile sizes are the same and therefore each task transmits the same amount of data. This

means that we effectively only have to construct a single symmetric q × q matrix C of
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communication costs such that C (a,b) = W ab
i k for any edge (ti , tk ) and all a,b = 1, . . . , q .

Recall that the communication cost from any processor to itself is zero, and that all costs

are assumed to be the same in both directions for each processor pair. Therefore all

diagonal entries of C are zero and it is symmetric, so we only need to populate the upper

(resp. lower) triangular part. Again, we use a gamma distribution for this, but this time its

mean value µcomm must first be calculated in order for the DAG to meet some input target

CCR parameter β, where β is as defined by Eq. (2.22). Let C be the mean of all entries in

C , including the zeroes along the diagonal. Note that µcomm = q
q−1C because there are q

zeroes along the diagonal. Since all edges have the same possible costs, we have wi k =C

for any (ti , tk ). This means in particular that

β=
∑

i ,k wi k∑
i wi

= vC∑
i wi

=⇒ C = β

v

∑
i

wi .

So, once the computation costs have been set, we can calculate C and therefore µcomm.

As before, the distribution is also specified by an input coefficient of variation vband, this

time intended to represent the variability of the link bandwidths, so that for all a = 1, . . . , q

and b = a +1, . . . , q , we sample

C (a,b) ∼ Γ(1/v2
band, µcomm · v2

band)

in order to construct the matrix.

To summarize, the complete cost-setting procedure we used for the Cholesky graphs

is presented in Algorithm 3.1. In principle there are five parameters which control the

method: q , β, vproc, vrel and vband. However to simplify the presentation of results later

we assume that vproc = vrel = vband :=V so that there is effectively only one coefficient of

variation parameter. In our experiments we considered V ∈ {0.2,1.0} in order to compare a

relatively low variation in the costs to much greater variability. Furthermore, we assumed

that the target platform always comprised q = 20 processors since the different sizes of

the graphs ensured that the ratio between tasks and processors varied widely anyway.

For the final parameter, β, we considered values from the set {0.01,0.1,1.0,10.0}. For

each of the 10 topologies and each combination of the parameters V and β, we did 10

realizations of the costs. Altogether this means that the Cholesky DAG set effectively

comprised 10×2×4×10 = 800 different graphs.
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Algorithm 3.1: Cost-setting procedure for Cholesky DAGs.

Inputs :q,β, vproc, vrel, vband

// Set relative sizes of task types
1 F (GEMM) = 2, F (POTRF) = 1/3, F (SYRK) = 2, F (TRSM) = 1
// Sample processor speeds

2 for a = 1, . . . , q do
3 Sa ∼ Γ(1/v2

proc, v2
proc)

4 end
// Sample relatedness multipliers

5 for k ∈ { GEMM, POTRF, SYRK, TRSM } do
6 R(k) ∼ Γ(1/v2

rel, v2
rel)

7 end
// Set computation costs

8 for i = 1, . . . ,n do
9 for a = 1, . . . , q do

10 W a
i = R(Ti )×F (Ti )/Sa

11 end
12 end

// Calculate distribution mean for communication costs
13 µcomm = qβ

v(q−1)

∑
i wi

// Construct communication cost matrix
14 for a = 1, . . . , q do
15 for b = a +1, . . . , q do
16 C (a,b) ∼ Γ(1/v2

band, µcomm · v2
band)

17 end
18 end
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Randomly generated DAGs. We took a slightly different approach for the randomly

generated graphs from the STG. First, to generate the computation costs, we used the

correlation noise-based (CNB) method introduced in [32]. This is an extension of the

standard method, based on a new measure called the correlation that more rigorously

quantifies the “relatedness” of a set of costs. In addition to the number of processors q ,

the CNB method takes three parameters, rtask, rproc and V , where:

• rtask ∈ [0,1) roughly describes how related the task sizes are (with low values being

less related);

• rproc ∈ [0,1) does likewise for the processor speeds;

• V is the coefficient of variation for the (gamma) distributions that the costs are

sampled from.

(There is also a fourth parameter, µ, the mean of the sampling distributions for the costs,

however for simplicity we always assumed that µ= 1 so it will not be mentioned again.) A

full description of the CNB method can be found at [32], and the values of the parameters

that we used are stated below.

After setting the computation costs with the CNB method, we used a different method

to generate communication costs than for the Cholesky graphs since we no longer assume

that all of the tasks transmit the same amount of data. First, we randomly generate

the bandwidth of all links by sampling from a gamma distribution with unit mean and

coefficient of variation vband—i.e.,

B(a,b) ∼ Γ(1/v2
band, v2

band),

where B(a,b) = B(b, a) is the bandwidth between any pair of processors pa and pb such

that b > a. Then we compute

B =
q∑

a=1

q∑
b=a+1

1

B(a,b)
,

as this will be needed later. Next, for each task ti , we sample what we call the local CCR

βi from a Γ(1/v2
ccr, µccr · v2

ccr) distribution, where µccr and vccr are parameters. The local

CCR of a task ti is defined as the ratio of the task’s mean communication and computation

times, βi = wi k /wi (for any k ∈ Γ+i since we assume that tasks transmit the same amount

of data to all their children). The CCR as defined by Eq. (2.22) is therefore the mean local
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CCR of all tasks multiplied by v/n (where v is the number of edges). Once the local CCR of

a task has been sampled, we calculate the corresponding amount of data di that the task

needs to transmit in order to achieve the specified local CCR through

di = wiβi q2

2B
. (3.8)

Finally, for all k ∈ Γ+i , a = 1, . . . , q , and b = a +1, . . . , q , we set

W ab
i k =W ba

i k = di /B(a,b).

Algorithm 3.2 summarizes the complete procedure used to set the communication costs

for the DAGs in the STG set. Note that we assumed that the same coefficient of variation

V used for setting the computation costs is also used for the local CCR and bandwidth

coefficients of variation—i.e., vccr = vband =V . As for the Cholesky factorization graphs,

this means that in effect we had only one coefficient of variation parameter for the entire

cost-setting method.

Algorithm 3.2: Procedure used to set communication costs for STG set.
Inputs :q,µccr, vccr, vband

// Set bandwidths
1 for a = 1, . . . , q do
2 for b = a +1, . . . , q do
3 B(a,b) ∼ Γ(1/v2

band, v2
band)

4 end
5 end
6 for i = 1, . . . ,n do
7 βi ∼ Γ(1/v2

ccr, µccr · v2
ccr)

8 Compute di using Eq. (3.8)
9 for k ∈ Γ+i do

10 for a = 1, . . . , q do
11 for b = a +1, . . . , q do
12 W ab

i k = di /B(a,b)
13 end
14 end
15 end
16 end

Recall that the STG benchmark comprises multiple subsets, each with 180 DAGs of

a given size. We used only those graphs with n = 100 tasks since the effect of varying

DAG size should be easier to ascertain from the Cholesky set. Including both the CNB

method for setting computation costs and Algorithm 3.2 for the communication costs, the
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parameters which control the complete cost-setting procedure, and the values that we

considered, are as follows:

• q ∈ {2,4,8};

• rtask ∈ {0.1,0.5,0.9};

• rproc ∈ {0.1,0.5,0.9};

• V ∈ {0.2,1.0};

• µccr ∈ {0.01,0.1,1.0,2.0}.

For each graph topology and combination of parameters, we repeated the algorithm 3

times, so that altogether the STG set effectively comprised 180×3×3×3×3×2×4 = 116640

different graphs. Note that we considered µccr = 2.0 rather than 10.0 because we found, as

in the previous chapter, that this led to an unacceptably high number of failures—i.e., a

worse schedule than the minimal serial time—for all of the methods compared. Even for

µccr = 2.0, the failure rates were typically around 5%, which is perhaps still too high, but

this rose to 50% for µccr = 10.0 which is clearly unacceptable. High failure rates were also

apparent for small Cholesky graphs with β= 10 but we still present that data because they

were much rarer for larger ones.

3.4.2 Task priorities

We evaluated the following methods for computing critical path lengths as task priorities

in HEFT.

• The 14 averaging schemes defined in Table 3.1;

• The lower and upper bounds on the critical path lengths defined in Section 3.3.2

(which will be referred to as LB and UB, respectively);

• The 4 Monte Carlo-based methods EV-A, EV-H, CR-A and CR-H that were defined in

Section 3.3.3. (Note that, as in the example, we always used 1000 realizations of the

DAG weights in the MC simulation.)

Altogether, this means that there were 20 different methods that we compared to one

another.
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Cholesky DAGs. In Figure 3.3, we illustrate the mean percentage degradation (MPD)

of each task prioritization scheme for the Cholesky factorization graphs. Note that the

figure divides the graphs according to V and β, so that each bar chart presents the results

for 100 (differently sized) graphs. As in the previous chapter, we see that there is a lot

of variation and no method completely dominates all others. The new EV-A/H schemes

were clearly the best for V = 0.2, especially for lower β values, although it should be noted

that—as the MPD values stated in the figure indicate—the margins were very fine for those

graphs, with almost all of the methods doing well. There was little advantage in using EV-H

rather than EV-A and they were usually very similar. Results were much less positive for

CR-A/H since they were the worst methods overall. Falling between the two extremes, the

bound-based task prioritizations LB and UB were both decidedly mediocre, although the

former was consistently superior to the latter. As for the averages, the means M, HM/SHM

and GM/SGM all performed well, especially GM, which recorded the lowest MPD for the

set as a whole.

STG set. We repeated the comparison for the STG set, as summarized by Figure 3.4. This

time we present the data according to the values of V and µccr that were used in the cost-

setting method, so that each bar chart represents 116640/8 = 14580 graphs. Overall, the

comparative quality of the different prioritization methods was largely similar to what we

observed for the Cholesky graphs. However the two EV variants were clearly the outright

best overall this time, almost always being the top two methods for each subset of the

graphs shown in the figure. EV-H was also slightly, but consistently, superior to EV-A,

where we saw no difference before. On the other hand, once again the criticality-based

schemes CR-A and CR-H were the worst and the bounds LB and UB were mediocre across

the board. Furthermore, the same averages that did well for the Cholesky graphs—i.e., M,

HM/SHM, GM/SGM—also did well for these graphs. Note that we chose to illustrate the

results in Figure 3.4 according to V and µccr since the comparative performance of the

task prioritizations was more consistent for different values of the other parameters.

Despite the good performance of the two EV methods, it is still unclear that they offer

any real advantage once the additional computational effort required to compute them

is taken into account. We are wary of discussing runtimes here since our Python code

is not—and is not intended to be—optimal, but we found that even EV-A (which was
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(a) V = 0.2, β= 0.01. (b) V = 1.0, β= 0.01.

(c) V = 0.2, β= 0.1. (d) V = 1.0, β= 0.1.

(e) V = 0.2, β= 1.0. (f ) V = 1.0, β= 1.0.

(g) V = 0.2, β= 10.0. (h) V = 1.0, β= 10.0.

Figure 3.3: Mean percentage degradation (MPD) of task prioritization schemes for
Cholesky set with different combinations of V (coefficient of variation) and β (the CCR).
Legends identify the three best. Red bars represent averaging-based schemes, yellow those
based on bounds on the critical path length, and blue those derived from the stochastic
interpretation described in Section 3.3.3.
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(a) V = 0.2, µccr = 0.01. (b) V = 1.0, µccr = 0.01.

(c) V = 0.2, µccr = 0.1. (d) V = 1.0, µccr = 0.1.

(e) V = 0.2, µccr = 1.0. (f ) V = 1.0, µccr = 1.0.

(g) V = 0.2, µccr = 2.0. (h) V = 1.0, µccr = 2.0.

Figure 3.4: Mean percentage degradation (MPD) of task prioritization schemes for STG
set with different combinations of V (coefficient of variation) and µccr (mean CCR). Leg-
ends identify the three best. Red bars represent averaging-based schemes, yellow those
based on bounds on the critical path length, and blue those derived from the stochastic
interpretation described in Section 3.3.3.
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slightly cheaper than EV-H) was at least 5 times as expensive as the averaging methods.

As discussed in Section 3.3.3, this may be better than expected, given that we used 1000

realizations in the MC method, but it could still be prohibitively high depending on the

context; this is a determination that will likely always have to be made by users based on

their own needs.

(We have not so far addressed one obvious question: do we actually need 1000 MC

realizations in order to get a good approximation of the expected value? Could, say, 10

realizations be nearly as accurate and significantly cheaper? In fact, we found that the

performance of EV-A/H was almost as good with 10 realizations as with 1000. However,

because our code is largely vectorized, the former was not significantly more expensive

than the latter for the relatively small graphs from the STG, although the disparity was more

pronounced for the larger Cholesky factorization graphs. Therefore it seemed sensible to

use 1000 realizations as that gives a tighter approximation. The broader question of how

many MC realizations are typically required in practice to approximate the critical path

distribution will be treated in greater depth in the next chapter.)

3.4.3 Critical path assignment

In an attempt to determine how the critical path should be approximated in the assignment

framework, we compared the 18 different methods for identifying the critical path of a

graph that were described in Section 3.3: the 14 averaging schemes and the 2 bounds,

plus the most frequently critical path that we observed from the MC method for the two

different sets of pmfs (A or H, as in the previous section). The averages and bounds are

referred to as in the previous section. The two MC-based methods are denoted by MCP-A

and MCP-H (for most critical path). In addition, we included two other methods in the

comparison, to make a total of 20. The first is referred to as EFT since it is defined by

using the earliest finish time (EFT) rule to schedule all tasks—i.e., not using critical path

assignment at all. This is equivalent to the standard HEFT algorithm since, as noted earlier,

we always used the standard upward ranks to prioritize the tasks. EFT was included to

answer the question, when is scheduling the expected critical path on a single processor

actually helpful at all? The other additional method is denoted by RND and was likewise

included to gauge the effectiveness of path assignment as a concept. It is defined by
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assigning a randomly chosen path (which was computed by simply beginning at the

source and repeatedly selecting a child task at random until the sink was reached).

Figure 3.5 illustrates the MPD of each method for the Cholesky graphs. We see that the

picture is very much mixed: EFT was utterly dominant for β= 0.01 and 0.1 but among the

worst for three of the four other subsets. The explanation for this is straightforward. Even

assuming that we can successfully identify the critical path, it is only sensible to schedule

its tasks on a single processor when the time saved made by eliminating communication

between them is greater than the time saved by scheduling the tasks on the processors

which minimize their execution times (consider the simplest example of a graph com-

prising a single chain of tasks). Therefore we can only expect critical path assignment

to be helpful when communication is not dwarfed by computation. Moreover, it seems

foolish to compare the different methods to one another when they are all objectively poor.

(Indeed, if we follow the chain of logic further it could even be argued that a method which

does worse than another with low communication costs may actually be more successful in

identifying the critical path since poor scheduling of its path leads to worse performance

than poor scheduling of the other’s.) However, even if we restrict ourselves only to those

parameter combinations for which EFT does not dominate, it is difficult to see any clear

trends in Figure 3.5. For example, when β= 10, RND is one of the best with V = 1 but one

of the worst for V = 0.2. In fact, RND was the best on average for the entire set of Cholesky

graphs.

Critical path assignment was even less effective for the graphs from the STG set. We

found that, for every subset of the graphs defined by a combination of parameters in

the cost-setting algorithm, EFT was always the best on average. This was true even for

µccr = 2, when communication was highest. However, interesting behavior is apparent

if we consider the subset of 62140 graphs (≈ 53% of the total) for which at least one of

the path assignment methods recorded a shorter schedule than EFT. Figure 3.6 shows the

percentage of the 62140 graphs for which each of the methods was the best. We see that

there is no dominant method: each was the best at least 15% of the time and the highest

percentage recorded was just over 20% (by R). The interesting part is that the preference-

based averaging methods R, D, SD and NC were the best, when, with the exception of SD,

they have typically been among the worst for task prioritization, both in this chapter and

the previous. It isn’t clear whether this is truly meaningful or if it is simply an artifact of
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(a) V = 0.2, β= 0.01. (b) V = 1.0, β= 0.01.

(c) V = 0.2, β= 0.1. (d) V = 1.0, β= 0.1.

(e) V = 0.2, β= 1.0. (f ) V = 1.0, β= 1.0.

(g) V = 0.2, β= 10.0. (h) V = 1.0, β= 10.0.

Figure 3.5: Mean percentage degradation (MPD) of path assignment schemes for Cholesky
graphs with different combinations of V (coefficient of variation) and β (the CCR). Leg-
ends identify the three best. Red bars represent averaging-based schemes, yellow those
based on bounds on the critical path length, and blue those derived from the stochastic
interpretation described in Section 3.3.3. The purple bar represents no path assignment
and the green assigning a randomly-chosen path.



104 | CRITICAL PATH

Figure 3.6: Percentage of the 62140 graphs from the STG for which EFT was not the best
that each of the path assignment methods were instead (so that higher values indicate
better performance). Legend identifies the three best. Ties are not distinguished so sum of
percentages may exceed 100. Red bars represent averaging-based schemes, yellow those
based on bounds on the critical path length, and blue those derived from the stochastic
interpretation described in Section 3.3.3. The green bar represents assigning a randomly-
chosen path.

the fact that the graphs considered are those for which EFT did relatively poorly. Indeed, it

is very difficult to draw any firm conclusions here; it seems safest to say that identifying

the best critical path for assignment is a subtler problem than it may first appear.

3.5 CONCLUSIONS AND FUTURE WORK

As in the previous chapter, our foremost takeaway from the empirical investigation con-

ducted here was a greater appreciation for the difficulty of the DAG scheduling problem in

heterogeneous computing. We repeatedly found that evaluating results was difficult, with

many possible interpretations. Regarding the task prioritization usage of the critical path

in particular, we make the following conclusions.

1. The new methods EV-A and EV-H that were proposed in Section 3.3.3 performed

very well for the graphs from the STG set, achieving better schedules than all the
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alternatives on average. They were more expensive, however, so schedule makespan

reductions may be outweighed by the additional time required to compute them.

Furthermore, although still broadly competitive, various averaging-based methods

were superior for the Cholesky graphs when the cost heterogeneity was high (i.e.,

V = 1).

2. The prioritization methods CR-A and CR-H based on computing task criticalities

using MC were consistently the worst. It is not clear why this is the case, although

the fundamental issues with using criticality to prioritize tasks that were highlighted

by Williams [139] may be responsible.

3. The LB and UB rankings, based on the critical path bounds described in Section

3.3.2, were mediocre and in particular did not improve on the B/SB and W/SW

averaging schemes that they were intended to extend.

4. Results were again granular, with the best method for a task graph and target plat-

form appearing to depend on a wide range of factors. This suggests that the wisest

course of action in practice is to use different methods in different situations, guided

by exploratory testing similar to the investigation that was described here.

Our conclusions concerning the path assignment usage of the critical path reflect the

previous point. Determining the best method is clouded by the fact that the concept itself

only appears to be useful when communication predominates computation. However,

even when this is the case, it is far from clear which methods are the best and when, with

none of those considered here distinguishing themselves above others. In terms of future

research, the most obvious extension of this work would be to increase the scale of the

empirical investigation, including considering more graphs from real-world applications.



CHAPTER 4

PREDICTING SCHEDULE LENGTH

UNDER UNCERTAINTY

Suppose that we have computed a schedule π for a task graph G . What is the makespan of

π? Assuming that all task execution times and communication delays—the schedule costs—

are known exactly, this is straightforward. But what if the actual schedule costs cannot be

predicted precisely? What if we know that there are a range of possible values each may

take at runtime? In practice, this will almost always be the case: typically, the best that

we can do is to define some probability distributions that we believe they follow, based

either on theoretical analysis or relevant data (such as the BLAS kernel benchmarking

described in Section 2.5.1). In other words, the costs can be modeled as random variables

(RVs), rather than fixed scalars. But if the schedule costs are stochastic then clearly the

makespan itself must be as well; how do we compute its distribution?

4.1 A LONGEST PATH PROBLEM

Of course, if schedule costs are RVs rather than scalars, it is impossible to specify the precise

times at which processors should execute their assigned tasks. Therefore, at this juncture

we should define precisely what we mean by a schedule: we assume that a schedule π is a

mapping from tasks to processors that specifies only which tasks each processor should

execute and the order in which this should be done, with the understanding that the

processor executes its next scheduled task as soon as it is able—i.e., without artificial

delays. Conceptually, we can view this as all processors being assigned an ordered queue

106
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Figure 4.1: A schedule for the task graph from Figure 3.1. Displayed in this manner, the
makespan is clear. Note that although there is a gap in which both processors are idle due
to communication delays, this is in fact an optimal schedule.

of tasks before runtime and only being allowed to execute the task currently at the head of

their queue.

Since it defines the execution order of tasks on processors, any schedule π for an

application with task graph G can therefore be represented by another graph Gπ which

contains all the same nodes and edges as G , plus an additional set of disjunctive edges

that indicate the execution order of the tasks on their chosen processors. We will refer to

Gπ as the schedule graph associated with the task graph G and schedule π. Note that there

is some flexibility in how we add the disjunctive edges but the most straightforward way

is to simply add a disjunctive edge between a given task and the task which is executed

immediately before it on the same processor if no edge already exists between the two. To

illustrate the process, Figure 4.2 presents a schedule graph for the schedule from Figure

4.1 and task graph from Figure 3.1. Observe that we only need to add three disjunctive

edges to the task graph topology in order to construct the schedule graph.

The weights of Gπ are induced by the processor selections of π, assuming that all

disjunctive edges have weight zero. In particular, this means that the longest path of Gπ

is equal to |π|, the makespan of π. For example, we see in Figure 4.2 that the longest

path is (1, 2, 4, 5, 6, 7, 9), with a length of 35, which is the schedule makespan. Therefore,

finding the distribution of the makespan for a schedule with stochastic costs is equivalent

to computing the distribution of the longest path through a DAG with stochastic weights.
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Figure 4.2: Schedule graph corresponding to schedule from Figure 4.1 and task graph
from Figure 3.1. Task execution costs under the schedule are denoted by the red labels
near the nodes. Unlabeled edges have zero cost, including disjunctive edges which are
indicated by the dotted lines. Red highlighted edges comprise the longest path.
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4.1.1 Complexity

For a generic task ti , let wi be its execution cost according to the scheduleπ—and therefore

the weight of ti in the schedule graph Gπ. Similarly, let wi k be the weight of a generic edge

(ti , tk ) in Gπ. If the schedule costs were scalars, as in the example above, then finding the

longest path through Gπ would be straightforward. In particular, we would recursively

compute a sequence of numbers Li defined by L1 = w1 and

Li = wi +max
h∈Γ−i

{whi +Lh} (4.1)

for all other i = 2, . . . ,n. The longest path of Gπ, and therefore the makespan of π, would

then be given by Ln . Computing these values is an O(n + e) ≈ O(n2) operation, which

depending on the size of the DAG may be expensive but is at least polynomial. (Of course,

we could work backward through the DAG by setting Ln = wn and doing the maximization

over the set of task children in Eq. (4.1) instead; the makespan would then be given by L1

but the procedure is otherwise equivalent.)

However, if the schedule costs wi and wi k are RVs instead of scalars, then it isn’t

clear how we can apply Eq. (4.1) in order to compute the distribution of the schedule

makespan. Fundamentally, Eq. (4.1) comprises two operations: summation and maxi-

mization. Neither of these are straightforward for arbitrary RVs. If we assume that the

cost RVs are independent of one another, then summations and maximizations can be

computed through convolutions and products of their distribution functions, respectively

(see Section 4.2.2). But this presupposes that the distributions of all weight RVs are fully

known, which may not be the case. Moreover, observe that the maximization is effectively

computed for a set of RVs which represent path lengths—i.e., summations of task and

edge weight RVs—and, even if all of the individual weights are independent of one another,

the lengths of two or more paths typically won’t be independent because of shared tasks

and edges. This means that maximizations will typically need to be performed for sets

of dependent RVs at any rate. Formalizing the intuitive difficulty, Hagstrom proved that

computing the longest path distribution of a graph with stochastic weights, or even just its

expected value, is a #P-complete1 problem for discrete RVs [60].

1The traditional way to explain the complexity of this class intuitively is to say that solving a #P-complete
problem is equivalent to counting the number of solutions to an NP-complete one [132].
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4.1.2 Scope of this chapter

The problem of computing the distribution of the longest path through a DAG with

stochastic weights was first studied in the context of Program Evaluation Review Technique

(PERT) [79] network analysis. A PERT network is essentially what we have referred to here

as a schedule graph, with the graph representing a project and its weights the time that its

constituent tasks will take to complete. But the stochastic longest path problem has also

been studied in other research areas such as digital circuit design [24]. Therefore, from

now on, we will explicitly focus on the more general problem of finding the longest path

distribution for a graph with stochastic weights, rather than the makespan of a schedule

with stochastic costs. However, as described above, the two are equivalent.

We make only one significant assumption about the graph weights: namely, that they

are independent. Realistically, this is unlikely to be wholly true for schedule graphs. For

example, uncertainty in task execution times may be due at least in part to fluctuations

in processor speeds; if task ti takes longer than expected on processor pa , it is likely that

the next task tk scheduled on pa will also take longer than average. But the independence

assumption is not completely unrealistic either. Moreover, it makes the problem slightly

more tractable and is common in the literature [34], [112]. Beyond independence, the only

other assumption we make about the weight distributions is that we can at least estimate

their means and standard deviations. This is broadly reasonable; for example, assuming

we have access to benchmarking data such as that gathered in Section 2.5.1, we can use

sample summary statistics as estimators.

Given the difficulty, computing the longest path distribution exactly is typically im-

practical, so approximations are needed instead. In the remainder of this chapter, we

give a brief overview of various bounds and heuristics that have been employed for this

purpose, before proposing a heuristic framework of our own for tackling the problem.

4.2 BOUNDS

For all i = 1,2, . . .n, let Li be the RV representing the length of the longest path from

the source t1 to the task ti , so that in particular Ln represents the distribution of the
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longest path through the entire DAG. Although computing Ln exactly is usually imprac-

tical, bounds on various quantities of interest may be computed much more cheaply.

Depending on the context, these may be tight enough to be useful, a claim that we will

investigate empirically for certain examples in Section 4.5.

4.2.1 On the moments

Some of the oldest results concern the expected value of the longest path. Indeed, as we

have already seen in the previous chapter, a lower bound which dates back to the earliest

days of PERT analysis can be computed in O(n2) operations by replacing all weight RVs

with their expected value and then computing the longest path through the resulting

scalar-weight graph in the same manner as Eq. (4.1). Define u1 = E[w1] and recursively

compute

ui = E[wi ]+max
h∈Γ−i

{E[whi ]+uh} (4.2)

for all other i = 2, . . . ,n. Then we have ui ≤ E[Li ] for all i , so that in particular un ≤ E[Ln].

We will refer to this as the Critical Path Method (CPM) bound [79].

Fulkerson’s bounds and extensions. An alternative number sequence fi which yields

tighter bounds on the expected value of the longest path than the ui numbers was given

by Fulkerson [55]. Suppose, for the moment, that all of the weights follow discrete distri-

butions. For all i = 1, . . . ,n, define Zi to be the set of all weight RVs corresponding to nodes

and edges between the source and task ti . Let R(Zi ) be the set of all possible realizations

of the RVs in Zi . Given a realization zi ∈ R(Zi ), let `(zi ) be the length of the longest path

from the source to task ti (which is a scalar because all weights have been realized). Then

by the definition of the expected value we have

E[Li ] = ∑
zi∈R(Zi )

P[Zi = zi ]`(zi ). (4.3)

Let Bi be the set of all the weight RVs corresponding to task ti ’s immediate parents and the

edges connecting them to ti . Further, let R(Bi ) be the set of all possible realizations of the

RVs in Bi and let bi ∈ R(Bi ) be any such realization. Note that we can break up Eq. (4.3) by

recursively considering the immediate parents of a given task and rewrite it as

E[Li ] =∑
bi

∑
zh∈R(Zh )

h∈Γ−i

P[Bi = bi ]P[Zh = zh]max
h∈Γ−i

{`(zh)+bhi },
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where bhi is the realization of the edge weight RV whi according to the set of realizations

bi . Now suppose we recursively define a sequence of numbers by f1 = E[w1] and

fi =
∑

bi∈R(Bi )
P[Bi = bi ]max

h∈Γ−i
{ fh +bhi }, (4.4)

otherwise. Then Fulkerson proved that ui ≤ fi ≤ E[Li ] holds for all i = 1, . . . ,n.

Fulkerson’s bounds were extended to continuous weights by Clingen [39], who also

suggested a more computationally tractable formulation of Eq. (4.4), assuming that all the

graph weights are independent (as we have done here by default). The bounds were later

tightened by Elmaghraby [52], with the usual downside of greater computational effort

being required, before the entire approach was generalized by Robillard and Trahan [102].

Upper bounds on the mean. The methods discussed above provide only lower bounds

for the expected value. However, Dodin’s [47] lower bound on the distribution function

also induces an upper bound on the expected value (see below). Furthermore, if all graphs

weights follow New Better Than Used in Expectation (NBUE)2 distributions, then upper

bounds can be computed by substituting all weights with exponentially distributed RVs

that have the same expected values [65], [143]. This approach has the advantage that only

the expected values of all weights are necessary, rather than their full distributions.

Normal weights. If the task and edge weights are all normally distributed, then Kam-

burowski [66] was able to prove both lower and upper bounds on the expected value.

Furthermore, he also proved a lower bound on the variance and conjectured an upper

bound. These are the only non-trivial bounds on moments higher than the first that we are

aware of, although the upper is unproven and, as we shall see later, the lower is typically

very loose.

The basic idea is to recursively compute four number sequences mi , mi , si and si such

that mi ≤ E[Li ] ≤ mi and si
2 ≤ Var[Li ] ≤ si

2 for all i = 1, . . . ,n. Clearly, by taking

m1 = m1 = E[w1]

and

s1
2 = s1

2 = Var[w1]

2A concept from reliability theory, referring to distributions representing object lifetimes such that, at
any given time, the expected value of the remaining lifetime is smaller than the expected value of the entire
lifetime. Certain common distributions such as Erlang and uniform are NBUE, as are many others such as
gamma under restricted parameter regimes.
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we can achieve the desired bounds for L1. (As ever, we could work backward instead, in

which case the analogous results hold for the index n.) Now suppose that we move forward

through the DAG in a topologically sorted order. For a generic task ti , the variance bounds

are relatively straightforward, albeit loose. The lower bound is given by

s2
i =

s2
h +Var[whi ]+Var[wi ], if Γ−i = {th},

0, otherwise,
(4.5)

reflecting the intuition that the variance can be reduced almost arbitrarily by a maximiza-

tion (which needs to be performed in the case of multiple parents). The upper bound is

defined through

s2
i = max

h∈Γ−i

{
s2

h +Var[whi ]+Var[wi ]
}

. (4.6)

When the graph weights are all independent and normally distributed, the variance of

a path length is just the sum of the variances of the weights RVs along it. Therefore the

right-hand side of Eq. (4.6) is the maximum variance of any path from the source to

ti . Intuitively, then, the bound is equivalent to the proposition that the variance of the

maximum of a set of (dependent) normal RVs is bounded above by the greatest variance

of the maximands; see Section 4.4.2 for more on this.

The bounds on the expected value are somewhat less intuitive. Let

φ(x) = 1p
2π

e−x2/2 and Φ(x) =
∫ x

−∞
φ(t )dt (4.7)

be the unit normal probability density function and cumulative probability function,

respectively. Define a function h by

h(µi ,σi ,µk ,σk ) =µiΦ(δ)+µkΦ(−δ)+γφ(δ),

where γ=
√
σ2

i +σ2
k and δ= (µi −µk )/γ. Suppose that we have a set of (not necessarily

independent) normally distributed RVs X1, X2, . . . , Xr , where each Xi ∼ N(µi ,σ2
i ) and σ1 ≤

σ2 ≤ ·· · ≤σr . Define two functions f and f by the recursions,

f (X1) = f (X1) =µ1,

f (X1, X2) = f (X1, X2) = h(µ1,σ1,µ2,σ2),

f (X1, . . . , Xr ) = h
(

f (X1, . . . , Xr−1),0,µr ,σr
)
,

f (X1, . . . , Xr ) = h
(

f (X1, . . . , Xr−1),σr−1,µr ,σr
)
.



114 | PREDICTING

Then Kamburowski proved that, if we define

mi = f
(
{Xh}h∈Γ−i

)
and mi = f

(
{Xh}h∈Γ−i

)
for all i = 2, . . . ,n, where

Xh ∼ N
(
mh +E[whi ]+E[wi ], s2

h +Var[whi ]+Var[wi ]
)
,

Xh ∼ N
(
mh +E[whi ]+E[wi ], s2

h +Var[whi ]+Var[wi ]
)
,

and the sets are ordered in such a way that the inequality constraints on the variances is

satisfied, we have

mi ≤ E[Li ] ≤ mi .

Furthermore, he also showed that ui ≤ mi holds for all i —i.e., the lower bound is tighter

than the traditional CPM bound.

Although these bounds strictly only hold for normally distributed weights, it is possible

they may be useful approximations in other cases, particularly since they are conceptually

similar to the heuristics for computing the longest path distribution that are described in

Section 4.3.2. Therefore we investigate this possibility in Section 4.5.

4.2.2 On the distribution function

Rather than just the moments, we may be more interested in bounds on Fn , the cumulative

distribution function of the longest path. In this context, a bound indicates (first-order)

stochastic dominance between the distributions; in particular, B stochastically dominates

Ln if

Fn(z) =P[Ln ≤ z] ≤P[B ≤ z] = FB (z), ∀z.

For convenience, from now on we simply write Fn ≤ FB to represent this expression, so

that the aim here is to determine Fb and FB such that Fb ≤ Fn ≤ FB .

The first bounds on the distribution of the longest path were provided by Kleindorfer

[69]. As stated earlier, distribution functions for the sum and maximization of independent

random variables are easily computed. In particular, suppose X and Y are independent,

then FX+Y is computed through the convolution

FX+Y (z) =
∫ ∞

−∞
FY (z − t ) fX (t ) dt , (4.8)
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where fX is the probability density function of X , and Fmax(X ,Y ) via the product

Fmax(X ,Y )(z) = FX (z)×FY (z). (4.9)

Both of these can be readily approximated through standard numerical methods. Klein-

dorfer’s upper bound is given by working through the graph in the usual manner and

assuming path independence—i.e., computing Eq. (4.1) using Eqns. (4.8) and (4.9) for

sums and maximizations, respectively. A corresponding lower bound is given by effectively

disregarding all maximizations and simply choosing one of the maximands at random.

Inspired by the observation that Kleindorfer’s upper bound is exact when all path

lengths are independent, Dodin [47] combined the method with a sequence of transfor-

mations such that the graph is reduced to a single edge whose associated distribution

function bounds the longest path distribution from above. If the graph is series-parallel

then the bound is exact. Moreover, Dodin showed that his bound is tighter than Kleindor-

fer’s, and, as noted above, that a corresponding lower bound on the expected value can be

inferred.

Empirical studies by Ludwig, Möhring and Stork [78] and Canon and Jeannot [34]

suggest that the bounds of Kleindorfer and especially Dodin are usually tight, so they may

be useful as approximations of the distribution function in addition to formal bounds.

However, although both methods run in polynomial time, they tend to be more expensive

than heuristic solutions without pronounced improvements in accuracy, so are of less

interest from a practical scheduling perspective.

4.3 HEURISTICS

Although bounds obviously may be useful, in practice we are often satisfied with good

approximations to the longest path distribution. In a scheduling context, for example,

it may be the case that there are many prospective schedules that we need to quickly

evaluate in order to select the best among them. Many heuristics for estimating the

longest path distribution have therefore been proposed. In this section we briefly outline

some noteworthy examples.
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4.3.1 Monte Carlo simulation

The Monte Carlo (MC) method has a long history in approximating the longest path

distribution of PERT networks, dating back to at least the early 1960s [133]. As introduced

in the previous chapter, the basic idea is to repeatedly simulate the realization of all weight

RVs and then evaluate the longest paths of the resulting graphs. This procedure gives us

a set of longest path instances whose empirical distribution function is guaranteed to

converge to the true distribution by the Glivenko-Cantelli Theorem3. This represents a

considerable advantage compared to the family of heuristics introduced in the next section,

which only estimate the first two moments of the distribution. Furthermore, we can (at

least roughly) quantify the approximation error for any given number of samples. For

example, confidence intervals for the sample mean and variance can easily be constructed

[133]. On top of these theoretical assurances, the other big advantage of the MC method

is its simplicity: once the graph weights are realized, we only need to perform sums and

maximizations of scalar values, rather than RVs.

There are however also downsides to the MC method. First, all weight distributions

must be known in order to accurately simulate realizations. From a scheduling perspective,

this is not always the case for the execution times that task weights represent, let alone

the communication delays represented by the edge weights. On the other hand, it could

be argued that, since the Central Limit Theorem says that path lengths tend to normality

as they grow, so long as weight means and variances are known, the exact distributions

they follow become less important once the graph becomes sufficiently deep. Therefore,

assuming the graph is large enough, sampling weight realizations from any distributions

with the prescribed means and variances will likely result in a good approximation of the

actual longest path distribution; this hypothesis will be evaluated via simulation later.

The second, more critical, drawback of MC simulation is the computational cost. For

each complete realization of the DAG weights, we need to compute the longest path,

which is an O(n2) operation. The total cost is therefore O(Rn2), where R is the number of

graph realizations. Clearly, if the desired value of R is large then this may be impractical.

Again, however, there are caveats to this warning: as we saw in the previous chapter, in

practice it can often be the case that only a relatively small number of realizations are

3Despite this convergence in the limit, we refer to MC as a heuristic since any solutions obtained in
practice will only ever be approximate.
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actually required to obtain good estimates of the longest path distribution, even for very

large graphs. Furthermore, the MC method can easily be parallelized, suggesting that

runtimes may be more reasonable in reality than the analysis might indicate. Various

investigations along these lines are detailed in Section 4.5.

Given that the MC method is traditionally viewed as expensive, reducing the computa-

tional effort without sacrificing too much accuracy has long been desirable. Indeed, Van

Slyke’s [133] original paper introducing the MC method for PERT networks devotes time to

this, suggesting that it may be beneficial to initially perform a small number of realizations

of the graph in order to estimate which tasks have very low criticality—the probability of

being on a longest path, as defined in the previous chapter—before removing them from

the graph and performing more iterations of the MC method on the reduced graph. Van

Slyke also outlined an analytical approach to identifying tasks which are highly unlikely to

lie on critical paths, assuming that all weight distributions have finite ranges. However,

the method can fail to identify all tasks which can never be critical and may be expensive

besides. More sophisticated analytical techniques that aim to reduce the overall cost by

minimizing the number of RVs which need to be sampled were suggested by Burt and

Garman [31], Sigal, Pritsker and Solberg [116], and later Fishman [54]. The drawback of all

of these is that the initial analysis may be more expensive than simply doing the traditional

MC method, especially for complex graph topologies.

4.3.2 The Central Limit Theorem

Fundamentally, the length of any given path through a weighted graph is just the sum

of the individual weights along it. By the Central Limit Theorem (CLT), sums of inde-

pendent random variables are asymptotically normally distributed. So we can make a

reasonable argument that the longest path distribution itself may be at least approximately

normal, Ln ≈ N(µn ,σn). This intuition forms the basis of a family of efficient heuristics for

computing an approximation to the longest path distribution.

Clark’s equations. If we assume that all weight RVs can be characterized by their mean

and variance (i.e., effectively that they are also normal), then sums can be computed

though the well-known rule for any two normal RVs ε∼ N(µε,σ2
ε) and η∼ N(µη,σ2

η),

ε+η∼ N
(
µε+µη,σ2

ε +σ2
η+2ρεησεση

)
, (4.10)



118 | PREDICTING

where ρεη is the linear correlation coefficient between the two distributions (assumed to

be zero here since they are independent). Formulae for the first two moments of the maxi-

mization of two normal RVs—which is not itself normal—are less well-known but were

first provided by Clark in the early 1960s [38]. Let φ andΦ be the unit normal probability

density and cumulative probability functions, as defined by Eq. (4.7). Furthermore, for ε

and η as above, define

α=
√
σ2
ε +σ2

η−2ρεησεση and β= µε−µη
α

. (4.11)

Then the first two moments µmax and σ2
max of max(ε,η) are given by

µmax =µεΦ(β)+µηΦ(−β)+αφ(β), (4.12)

σ2
max = (µ2

ε +σ2
ε)Φ(β)+ (µ2

η+σ2
η)Φ(−β)+ (µε+µη)αφ(β)−µ2

max. (4.13)

Although these formulae are exact, they are only valid for a single pair of normal RVs. The

maximization of two normal RVs is not itself normal, so we cannot obtain the exact mean

and variance for the maximum of arbitrarily many RVs by applying them in a pairwise

manner. However, we can at least get an approximation. Sinha, Zhou and Shenoy [120]

empirically investigated the accuracy of this approximation for sets of up to 100 normal

RVs, ultimately concluding that it is usually good, with the average approximation error in

the mean and standard deviation around 2% and 14%, respectively. Furthermore, they

considered several possible orderings for the operands of the maximization (randomly,

sorted by mean value, and so on), a topic that was also briefly discussed by Ross [104].

They found that significant improvements in accuracy could sometimes be made through

different orderings. However, the best-performing choices that they considered were also

the most expensive, so in our own implementation, used in the simulations described

later, we decided to simply treat the maximands in a random order.

Sculli’s method. By using Eq. (4.10) for summations, and Eqns. (4.12) and (4.13) pair-

wise for maximizations, we can move through the graph in a manner similar to Eq. (4.1)

and compute approximations µn and σ2
n to the first two moments of the longest path

distribution; since it is assumed to be roughly normal, this suffices to describe the entire

distribution. This method appears to have first been proposed for estimating the comple-

tion time of PERT networks by Sculli [112], although to simplify the problem he assumed
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that all of the paths were independent—i.e., that all of the correlation coefficients ρεη in

Eq. (4.11) were zero.

In practice, the moment estimates obtained using Sculli’s method tend to be broadly

accurate [34]. Moreover, the method is typically much faster than alternatives. However,

ignoring the correlations between the maximands is not ideal since common ancestors

make path length RVs dependent, even when the weights themselves are not.

Including correlations. Efficiently computing the correlation coefficients between path

lengths is tricky. However, Canon and Jeannot [34] proposed two different heuristics

which alternatively prioritize precision and speed. The first is a dynamic programming

algorithm called Cordyn which recursively computes the correlations using formulae

originally derived by Clark [38] for the correlation coefficients between any normal RV τ

and a summation or maximization of two other normal RVs ε and η,

ρτ, sum(ε,η) =
σερτε+σηρτη

σsum
and ρτ,max(ε,η) =

σερτεΦ(β)+σηρτηΦ(−β)

σmax
. (4.14)

Cordyn has time complexity O(ne) ≈ O(n3), so is more expensive than Sculli’s method,

which is quadratic in n. However, numerical experiments performed by Canon and

Jeannot suggest that it is almost always more accurate.

In an effort to marry the speed of Sculli’s method and the accuracy of Cordyn, Canon

and Jeannot proposed an alternative heuristic called CorLCA. The main idea is to construct

a simplified version of the DAG called a correlation tree that has all the same nodes as

the original but only retains a subset of the edges. In particular, where multiple edges are

incident to a node—i.e., a maximization must be performed—only the edge expected to

contribute most to the maximization is retained in the correlation tree. The motivation

here is that the correlation coefficient between any two longest path estimates Li and Lk

can be efficiently approximated by finding the lowest common ancestor (LCA) ta of the

corresponding nodes ti and tk in the correlation tree: since Li ≈ La +η and Lk ≈ La + ε
where η and ε are independent RVs representing the sums of the costs along the paths

between ta and ti (resp. ta and tk ) in the correlation tree, we have

ρLi ,Lk ≈
σ2

La

σLiσLk

.

For every edge, we need to do a lowest common ancestor query, so the time complexity

of CorLCA depends to a large extent on the cost of these. Based on similar results in the
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literature, Canon and Jeannot hypothesize this can be done in linear time, giving an overall

time complexity O(e) ≈O(n2) for the entire algorithm. At any rate, a simulated comparison

of several heuristics for approximating the longest path distribution performed by Canon

and Jeannot suggested that CorLCA is more efficient than Cordyn with only a relatively

small reduction in accuracy [34]. It should however also be noted that it can do badly

when longest path length estimates for two or more incident edges at a node are similar

since only one of the edges will be retained in the correlation tree.

The canonical method. Another heuristic for estimating the longest path distribution

that does not ignore the path length correlations comes from the field of digital circuit

design. In the so-called canonical model [136], [145], all weight and path length RVs are

expressed in the form

µ+
n∑

i=1
viσi ,

where µ is the expected value, the vi are scalar coefficients, and the σi are independent

unit normal RVs that characterize the variance. The advantage of this is that evaluating

summations and maximizations becomes much more straightforward. Let

η=µη+
∑

i
vη,iσi and ε=µε+

∑
i

vε,iσi .

Then

η+ε= (µη+µε)+
∑

i
(vη,i + vε,i )δi .

The maximization is only slightly more complex. Let β be as defined in Eq. (4.11). Note

that computing β requires the linear correlation coefficient ρηε, which can be efficiently

calculated through

ρηε =
∑

i vη,i vε,i√∑
i v2

η,i

√∑
i v2

ε,i

.

By definition, we then have

max(η,ε) =P[η> ε]η+P[ε> η]ε

=Φ(β)η+Φ(−β)ε

=Φ(β)µε+Φ(−β)µε+
∑

i

(
Φ(β)vη,i +Φ(−β)vε,i

)
σi ,
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which permits the efficient computation of the maximum. Observe that this is both similar

and in some sense contrary to the Clark equation approach, in that the latter precisely

computes the first two moments of the maximization of two normal RVs, whereas the

canonical method approximates the distribution of the maximization of any two RVs using

linear combinations of normal RVs. In their empirical comparison, Canon and Jeannot

found that the canonical method tended to fall between Sculli’s heuristic and CorLCA in

terms of both speed and approximation quality [34].

4.3.3 Fitting a distribution

Canon and Jeannot [33] tested the hypothesis that the longest path distribution will be

normal for a large collection of randomly generated graphs. They found that it was broadly

reasonable, although there were also a number of violations, most notably when the

graphs weights followed exponential distributions (rather than normal or beta, which

were the alternatives considered). Analysis suggests that the normality assumption may

also be less robust for graphs that are highly parallel or large and dense. To reduce the

problem to first principles, the longest path through a graph is exactly that: the longest of

all paths. Let P denote the set of all paths through the graph Gπ and, for any given path

δ ∈ P , let |δ| denote its length. Then we have

Ln = max
δ∈P

|δ| (4.15)

where each maximand is an RV representing the length of an individual path. When

the number of potential critical paths is small, the maximization in Eq. (4.15) is likewise

dominated by a small number of terms, each of which can be assumed to be normal

by the CLT, so the error in approximating the longest path distribution with a normal is

relatively small [120]. However if there are many possible critical paths—which is often the

case for large or highly parallel graphs—the error may be much greater. More accurately

determining the distribution the longest path follows in such cases would therefore be

eminently useful.

Extreme value theory. Dodin and Sirvanci [49] suggest that an extreme value distribution—

specifically a Gumbel distribution—may be a sensible choice. Although extreme value

theory typically concerns itself with the maximum (or minimum) of independent and
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identically distributed (IID) RVs, which the path lengths generally are not, when paths are

loosely correlated we can make an intuitive argument that a Gumbel distribution may be

a better fit for the longest path distribution than a normal. Assuming that this is the case,

Dodin and Sirvanci also showed how its distribution function, mean and variance could

all be approximated. Key to their analysis is the concept of what they call a dominating

path, intuitively defined as a path that is likely to be critical. Leaving the very important

questions of how this should be both formally defined and efficiently computed aside

for the moment, suppose that there are d dominating paths. Let δ∗ be the path with the

greatest mean length µ∗ and let σ∗ be the standard deviation of its length. The general

form of the Gumbel distribution function is

G(t ) = exp[−e−b(t−a)],

where a is the location parameter and b the scale. By manipulating formulae from Cramer

[42], Dodin and Sirvanci show that these parameters can be approximated by

ad =µ∗+σ∗
(p

2lnd − lnlnd + ln4π

2
p

2lnd

)
and

bd =
p

2lnd/σ∗,

respectively. The mean E[Ln] and variance Var[Ln] of the longest path distribution are

then approximated by

E[Ln] ≈ ad +γ/bd ,

where γ is the Euler-Mascheroni constant (γ≈ 0.577), and

Var[Ln] ≈π2/(6b2
d ).

From a practical perspective, the rub with this approach is that we need to estimate

the number of dominating paths, however we choose to define them. In a more recent

publication, Dodin [46] suggests the following simple heuristic procedure: consider paths

in descending order of their mean length and add them to the set of dominating paths

until the difference between the current path length mean and µ∗ (as defined above)

exceeds max{0.05µ∗,0.2σ∗}—i.e., the path is unlikely to be longer than δ∗. Of course, this

in turn begs the question of how we efficiently generate the paths; we will cover very

similar theoretical ground in Section 4.4.1 so will defer more detailed treatment of this

topic until then, but it is likely to be expensive at any rate.
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Mixture of distributions. Instead of a normal or extreme value distribution, Mehrotra,

Chai and Pillutla [86] suggest that the longest path is typically more accurately described

by a mixture of distributions. Moreover, they also proposed an analytical method for

approximating this mixture. The basic idea is to first compute the paths with the greatest

expected length in the traditional CPM manner, then treat the tasks which are shared

between two or more such paths separately from the rest, so that the maximization over

the path length RVs is effectively split into dependent and independent parts. Simulation

results for a collection of small benchmark graphs from the literature are presented which

indicate that their method is more accurate than the normal or extreme value hypotheses

but, to reduce the computational effort, these simulations assumed that all graph weights

were IID RVs. Indeed, the big problem with this approach in general is that it is likely to be

prohibitively expensive for even moderately sized graphs.

Working backward. Rather than approaching the problem analytically, Salas-Morera et

al. [109] took a different tack: using simulation, they analyzed the longest path distribution

for a large collection of benchmark graphs, assuming that the weights followed various

distributions (beta, normal, triangular and uniform), in order to determine which, if any,

standard distribution was the best fit. They found that neither the normal or Gumbel

distributions were especially good fits and, in general, a gamma distribution was more

accurate. Moreover, they performed a linear regression in order to determine how the first

two moments of such a gamma distribution can be best approximated as a function of

graph attributes. Ultimately they concluded that

E[Ln] ≈ 0.9126un +0.775σmin +2.9658ln(D),

when the weight distributions were beta, triangular or uniform, and

E[Ln] ≈ 1.1336un −0.9153σmin +1.0927ln(D),

when they were normal, where:

• un is the traditional CPM bound on the mean as defined by Eq. (4.2)—i.e., the

greatest individual path length mean;

• D is the number of dominating paths, as defined by Dodin [46];



124 | PREDICTING

• σmin is the smallest path length variance of all paths in D.

Furthermore, for all weight distributions, the variance was approximated by

Var[Ln] ≈ 0.9115σmin.

Salas-Morera et al. verified this empirically-derived model on another benchmark graph

set, finding that it was again more likely to better represent the longest path distribution

than either the normal or Gumbel distributions.

4.4 REDUCE PATHS, THEN MAXIMIZE

In theory, computing the longest path through a DAG with stochastic weights is straight-

forward: we just calculate the maximization in Eq. (4.15). Of course, leaving aside the

question of how we actually do the computation, the issue with this way of framing the

problem is that P is usually impractically large, being bounded above only by 2n−2 (the

number of paths through a fully-connected DAG of size n). It is rare that we can even

efficiently enumerate all of the possible paths, which is why the dynamic programming ap-

proach of Eq. (4.1) is typically preferred even for scalar weights. But if we could somehow

reduce the size of the set of paths which need to be considered, this alternative conception

may be more useful. In particular, we suggest that the following broad heuristic framework

may be useful for approximating the longest path distribution:

1. Identify a set Q of paths which are good candidates to be the longest.

2. Approximate the distribution of their maximization.

We refer to this framework as Reduce Paths, then Maximize (RPM). This is not an entirely

new approach: a similar method was used by Ludwig, Möhring and Stork [78] to compute

heuristic bounds on the longest path distribution function. However, we will treat the

idea in much greater detail than was done there, with several alternatives for each phase

considered.

4.4.1 Identifying path candidates

Suppose that we want to identify some subset Q ⊂ P such that |Q|¿ |P | and maxδ∈Q |δ| ≈
maxδ∈P |δ|. Intuitively, perhaps the most natural way to define such a Q is in terms of path



REDUCE PATHS, THEN MAXIMIZE | 125

criticality, the probability that a given path will be the longest, i.e.,

C (δ) :=P(|δ| ≥ max
γ∈P\{δ}

|γ|). (4.16)

Ideally, we should like to define Q as the set of all paths that have nonzero criticality, or, if

this is still impractically large, at least choose Q such that it contains those paths with the

greatest criticality. Unfortunately, even computing the single path most likely to be critical

is a difficult problem. The main issue is that, unlike for scalar weights, the problem does

not have optimal substructure so dynamic programming cannot be applied, as pointed

out by Sourash [122], who proposed an alternative algorithm based on mathematical

programming. Although runtimes were reported to be reasonable in simulations, his

algorithm has exponential worst-case time complexity. Furthermore, it isn’t clear how this

method can be extended to obtain a set of paths with high criticality, rather than a single

path. Heuristics for estimating the most critical paths are therefore typically preferred in

practice.

Monte Carlo. The most straightforward way to identify paths with high criticality is to

use the MC method. In particular, for a small number of samples, we could simply define

Q as the set of those paths which we observed to be critical. Of course, the tricky part here

is ensuring that this method gives a more accurate estimate of the longest path distribution

than simply using the empirical MC distribution. The ideal scenario would be a graph

with a single path which is always critical; assuming we can accurately estimate its length,

we could therefore fully describe the longest path distribution after a single sample. More

generally, one hopes that there is a “sweet spot” range of sample numbers for which this

method is both more accurate than the initial small-scale MC and cheaper than taking

enough additional samples such that the empirical solution is superior. Note that more

sophisticated ways to estimate path criticalities using MC have also been proposed; see,

for example, Sigal, Pritsker and Solberg [116]. However, such methods typically require

expensive analysis of the graph before doing the MC, which can make them impractical.

Scalarization. Although it seems sensible that Q should contain the paths which are

most likely to be longest, we don’t need to estimate path criticalities in order to make a

good approximation. For example, like for Dodin’s [46] dominating paths, we could define

Q as the set of K = |Q| paths with the greatest expected length. The advantage of this
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approach is that mean path lengths can easily be computed by summing the means of the

weights along them. Therefore we can effectively scalarize the weights of the graph, so

that the problem becomes: how do we compute the K longest paths through a DAG with

scalar weights? This problem is not entirely trivial but it is simpler than the corresponding

problem for stochastic weights and can be solved by dynamic programming. The basic

idea is to move forward through the DAG and maintain an ordered list of the K longest

paths up to the current task. The only tricky part is when the task has y ≥ 2 parents, since

we need to concatenate each of the parent lists to form a new list with yK paths and sort it

in order to identify the K longest.

Stochastic dominance. By exploiting the concept of stochastic dominance, as defined

in Section 4.2.2, Dodin [48], proposed a polynomial time heuristic for approximating the

K most critical paths based on a discretization of the (continuous) weights. However,

the algorithm requires that the weights follow symmetric distributions and, although

polynomial, its O(n4) complexity may still be prohibitive. Therefore we propose the

following alternative heuristic for computing a set Q of K paths which are intuitively the

most likely to be critical. Given any two paths δ1 and δ2 whose lengths are assumed to be

normally distributed by the CLT, i.e., |δ1| ∼ N(µ1,σ2
1) and |δ2| ∼ N(µ2,σ2

2), the probability

that |δ1| > |δ2| is given by

P
(|δ1| > |δ2|

)=Φ
 µ1 −µ2√

σ2
1 +σ2

2 −ρ12σ1σ2

 , (4.17)

where ρ12 is the linear correlation coefficient between |δ1| and |δ2|. One immediate obser-

vation is that if µ1 >µ2 then P
(|δ1| > |δ2|

)> 0.5, so the path with the greatest mean length

is likely longer than any other given path through the graph (although not necessarily the

maximum of all other paths). For all i = 1, . . . ,n, define δ∗i to be the path from the source

to ti with the greatest expected length. For any given path δi which terminates at ti , define

y(δi ) :=P(|δi | > |δ∗i |)—i.e., the probability that path δi will be longer than δ∗i . Ideally, we

should like to define Qi as the K paths which have the largest y values—and therefore the

greatest probability of exceeding δ∗i , where the probabilities are computed using Eq. (4.17).

However, this requires the correlation coefficients, which are straightforward but poten-

tially expensive to compute (see next section). We instead define a surrogate function



REDUCE PATHS, THEN MAXIMIZE | 127

x(δi ) through

x(δi ) = µi −µ∗
i√

σ2
i + (σ∗

i )2
,

where we have assumed |δ∗i | ∼ N(µ∗
i , (σ∗

i )2) and |δi | ∼ N(µi ,σ2
i ), and also define Qi to be

the set of the K paths terminating at ti with the greatest x values. SinceΦ is an increasing

function, intuitively Qi should then contain most of the paths which are likely to exceed

δ∗i in length (also including δ∗i itself), so that Qn :=Q contains most of the paths which

are likely to be critical. Computing the Qi can be done in a similar manner as for scalar

weighted graphs: at each task, we retain only the K paths with the greatest x values and,

when a task has multiple parents, we concatenate the parent path lists and sort the paths

therein according to their x values in order to identify the K which should be kept. A

complete description of the procedure is given in Algorithm 4.1. (Note that we use the

notation δ+(t1, t2)+ t2 to indicate that we extend the path δ by adding the edge (t1, t2) and

task t2.)

It should be emphasized that this is a heuristic procedure and may not successfully

identify the K paths which have the highest criticality. Furthermore, the algorithm may

be expensive. The complexity depends on the length of the lists that we have to sort—

and therefore the number of parents that each task possesses. In the worst case, this is

O(n) on average, so that we effectively have to sort lists of O(K n) elements at every step.

However, the practical cost for realistic schedule graphs may be less drastic than this

analysis suggests; we will evaluate this in Section 4.5.4.

4.4.2 Approximating the maximum

Once we have computed the set Q of longest path candidates, we need to approximate

maxδ∈Q |δ|. First, however, we should answer the following question: given a path, how do

we estimate its length? Without making any assumptions about the weight distributions,

the simplest way is to invoke the CLT: if their lengths are normally distributed, then means

and variances are given by summing the means and variances of the constituent weight

distributions (recall that we assume that the weights are independent). The problem

then reduces to that of approximating the maximum of a set of dependent, differently

distributed (DDD) normal RVs. Below, we discuss several different ways this can be done.
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Algorithm 4.1: Computing a set of K paths which are among the most likely to be
critical.
1 for i = 2, . . . ,n do
2 Compute δ∗i using, e.g., Eq. (4.2)
3 end
4 Q1 = {t1}
5 for i = 2, . . . ,n do
6 if Γ−i = {th} then
7 Qi = {δ+ (th , ti )+ ti | δ ∈Qh}
8 else
9 Xi =⋃

h∈Γ−i {δh + (th , ti )+ ti | δh ∈Qh}

10 Compute x(δi ) for all δi ∈ Xi

11 Sort Xi in descending order of x values
12 Qi = Xi [: K ]
13 end
14 end
15 Q =Qn

Monte Carlo. Perhaps the most fitting approach is to use MC simulation—i.e., repeatedly

realize the path length RVs according to their distributions and calculate their empirical

maxima. The only issue here is that path lengths are typically dependent because of

shared task and edge weights. However, note that we can easily estimate the covariance

cov
(|δi |, |δ j |

)
between the lengths of any two paths δi and δ j , where |δi | ∼ N(µi ,σ2

i ) and

|δ j | ∼ N(µ j ,σ2
j ), as the sum of the shared weight variances. The traditional way to generate

sets of DDD normal path length RVs is then as follows [129]:

1. Construct a covariance matrix Σ such that Σi j = cov
(|δi |, |δ j |

)
by considering all

pairs of path length RVs;

2. Compute the Cholesky factorization C T C =Σ of the covariance matrix;

3. Generate standard (independent) multivariate normal vectors of length |Q|;

4. Multiply each of these by the Cholesky factor C ;

5. Add the vector of path length means to each.

In our own numerical experiments, we used the NumPy multivariate_normal function

[93], which efficiently implements the above method, with users only needing to input

the covariance matrix and the path length means. Assuming that Q is reasonably-sized,

the final four steps of the procedure will be relatively cheap since they largely depend on
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|Q| (and generating standard normal RVs can be done efficiently even if a large number

of realizations are desired). But computing the covariance matrix can be expensive; in

the worst case, all paths may comprise O(n) edges, so that checking shared weights for

all O(|Q|2) pairs may be onerous. Nonetheless, we will investigate the efficiency of this

method empirically in Section 4.5.4.

Clark’s equations. Rather than using MC, we could in theory use Clark’s equations pair-

wise to approximate the maximum of Q. There are several different ways to do this which

are in some sense analogues to the heuristics discussed in Section 4.3.2. For example,

ignoring all correlations between the paths would be similar to Sculli’s method, whereas

using the current most dominant path to estimate the correlations in the intermediate

maximizations would be a counterpart to CorLCA. Whichever flavor we use, the main

problem with this alternative approach is that we would again have to assume the distri-

bution of the maximization is roughly normal, which, as we shall see in Section 4.5.2, may

not always be the case.

Bounds. Although much less studied than the IID case, bounds on the maximum of

DDD normal RVs have been proven. For example, Ross gives a general upper bound for the

expected value of a set of (not necessarily normal) DDD RVs, which he later specializes for

the normal case, as well as mathematical programs for computing tight upper and lower

bounds on the expectation in the latter case [104]. None of these are likely to be practical

for the full set of paths—i.e., Eq. (4.15)—but they may be applicable for the maximization

over Q since it is (hopefully) much smaller. Of course, any such bounds established for

the smaller maximization would not technically hold for the full problem, but they may

still be useful. Indeed, Ludwig, Möhring and Stork [78] followed precisely this approach,

using a modified version of Dodin’s algorithm for computing the K most critical paths

(see above), in conjunction with the CLT, to obtain heuristic bounds on the distribution

function.

As an aside, it is interesting to note that when all weights are normal—so all path

lengths are exactly normal as well—there is at least one bound we can prove even for the

full set of paths. Since the mean of a given path length is just the sum of the means of

the weights along it, we can easily find maxδ∈P
(
E[|δ|]) via dynamic programming. This

is useful because by Jensen’s inequality we have E[max |δ|] ≥ max
(
E[|δ|])—i.e., the classic
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CPM lower bound on the expected value of the longest path. (Of course, this can be proven

via other methods to be true even when all weights are not normally distributed.) Similarly,

max(Var[|δ|]) can be computed cheaply for normal weights, which is Kamburowski’s

conjectured upper bound on the variance of the longest path in that case. The bound

therefore holds if and only if

Var[max(X1, . . . , Xm)] ≤ max(Var[X1], . . . ,Var[Xm])

holds for any set of DDD normal RVs X1, . . . , Xm . While simple counterexamples to this

conjecture can be found for RVs from arbitrary distributions, as far as we know it remains

an open question for normal RVs.

4.5 SIMULATION RESULTS

In order to study the stochastic longest path problem we created a simple software package

that facilitates the analysis of DAGs with stochastic weights. As ever, this can be found at

the Github repository associated with this thesis4. More established software along these

lines already exists, such as the Emapse package from Canon and Jeannot [34]. However,

we decided to create our own, both as a learning exercise and for ease of integration with

software used elsewhere in this thesis. Our study comprises three strands. First, in Section

4.5.2, we study empirical longest path distributions. Then, in Section 4.5.3 we compare

several heuristics and bounds from the literature. Finally, in Section 4.5.4, we evaluate

multiple new heuristics based on the RPM framework proposed in the previous section.

4.5.1 Graphs

As in previous chapters, we used two different sets of graphs in our investigation, the first

based on Cholesky factorization and the second with randomly generated topologies from

the STG [128]. However, unlike before, these were intended to be schedule graphs rather

than task graphs so there are significant differences, which are elucidated below.

Cholesky DAGs. The topologies of the DAGs in this set are largely similar to the Cholesky

factorization task graphs used in previous chapters. However, these graphs represent

4https://github.com/mcsweeney90/thesis-code

https://github.com/mcsweeney90/thesis-code
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schedules for such task graphs on accelerated—i.e., CPU and GPU only—target platforms

such as those considered in Chapter 2. This means that they have additional disjunctive

edges that indicate the order in which processors must execute the tasks. Moreover, since

the schedule determines which processor each task is executed on, the node and edge

weights of the schedule graph are modeled as RVs with means and variances given by the

relevant sample means and variances observed in the BLAS kernel benchmarking that

was described in Section 2.5.1 (and summarized in Table 2.3). Similarly, the edge weights

represent the communication costs dictated by the schedule and are therefore either

scalar zero, if the connected tasks were scheduled on the same processor (or two different

CPUs), or an RV with the sample mean and variance of the data movement cost that we

measured in our benchmarking experiments. (The latter were not presented in Table 2.3

but were broadly similar to the task execution timing data in terms of their coefficients of

variation). Note that at this stage we make no assumptions about the distributions that

the weight RVs follow, only that their means and variances are known.

Recall from Chapter 2 that we considered 10 Cholesky factorization task graphs cor-

responding to matrix tilings from 5×5 (denoted by N = 5) to 50×50 (N = 50), leading to

DAGs with between 35 and 22100 tasks. Furthermore, we considered two different tile

sizes (nb = 128 and nb = 1024) and two different target platforms, defined by the number

of GPUs s ∈ {1,4} since the number of CPUs was r = 32 in both cases. For each combination

of these parameters, we computed the HEFT [131] schedule for the resulting task graph

and target platform, and then constructed the corresponding schedule graph topology

by adding a disjunctive edge between a given task and the task immediately scheduled

before it on the same processor if no edge already existed between the two. Weights of the

graph were then determined by the schedule assignments as described above.

Our Cholesky graph set comprised 10×2×2 = 40 DAGs in total, corresponding to the

possible combinations of N , s and nb. When presenting results we will often split the set

into four subsets of 10 graphs, corresponding to combinations of the parameters s and nb.

Randomly generated DAGs. Large-scale empirical investigations along the lines of our

study have been done before with randomly generated graphs; see, for example, Canon

and Jeannot [34] or Ludwig, Möhring and Stork [78]. Therefore we decided it was best to

use only a small set as a point of comparison for the Cholesky graphs, which should be
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accorded more importance because they are based on a real application. As in previous

chapters, we used the topologies of graphs from the STG [128] benchmark as the basis

for this set. We used only the 180 graphs with n = 100 tasks since the effect of varying

size should be apparent from the Cholesky set. To set the weights of the graphs we used

the following simple procedure, which takes a parameter µv that represents the (mean)

coefficient of variation of the weight distributions:

1. Sample the means of all task and edge weight distributions uniformly at random

from the interval [1,100].

2. For each weight, sample the coefficient of variation from a gamma distribution

with mean µv and standard deviation 0.1µv (as done in [34] and with the same

justification).

3. Set the variance of each weight as indicated by the sampled coefficient of variation.

One can certainly question whether this procedure yields graphs which accurately reflect

those which are likely to arise in a scheduling context. This is somewhat deliberate,

as we wished to contrast the performance of various heuristics for these graphs and

the more realistic schedule graphs contained in the Cholesky set. Note that, as in [34],

we considered µv ∈ [0.01,0.03,0.1,0.3] and, for each choice and each DAG topology, we

repeated the weight-setting procedure 10 times. This means that our STG set therefore

comprised 4×180×10 = 7200 DAGs.

4.5.2 Analysis of longest path distributions

Thus far we have assumed that the mean and variances of all graph weights are known but

not the distributions that they follow. In this section, we analyze longest path distributions

corresponding to different weight distributions. Ultimately, there are two questions that

we wish to answer:

1. How similar is the longest path distribution for different weight distributions?

2. Does the longest path appear to follow any of the standard probability distributions—

e.g., normal, gamma, Gumbel—that have been suggested in the literature?
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These questions are of obvious practical importance when approximating the longest

path distribution. For example, since they are agnostic of the weight distributions, the

CLT-based heuristics described in Section 4.3.2 implicitly assume that the first two mo-

ments of the longest path distribution will be similar no matter which distributions the

weight follow, with the longest path itself assumed to be, at least roughly, normally dis-

tributed. Likewise, although no assumptions are made about the form of the longest path

distribution itself, the RPM heuristic proposed in Section 4.4 assumes that individual path

lengths will be similar for different weight distributions, so long as the weight means and

variances do not change.

Generating the distributions. Since computing the true longest path distributions is

impractical for the graphs in our test sets, we generated empirical longest path distribu-

tions using the MC method with 100,000 samples. This is likely to give highly accurate

approximations of the true distributions (see below), although it should of course be noted

that they are ultimately still only approximations. For convenience, we assumed that all

weights followed the same kind of distribution and considered the following choices:

• Normal, as a best case for the CLT approach since all path lengths are then also

exactly normal;

• Gamma, as it often used to model task durations in scheduling problems;

• Uniform, as it differs more broadly from the above than they do from one another.

Whichever distribution the weights followed, the means and variances remained the same,

so that realizations were generated in the MC method by sampling from a distribution of

the chosen type with the specified mean and variance.

Since we assume that all weights are non-negative because they represent time, if

a negative value did occur for the normal or uniform distributions we took its absolute

value, so that the distributions in that case were not, in fact, truly normal or uniform.

However, this was never relevant for the Cholesky graphs, since the weight coefficients of

variation were relatively small, and extremely rare even for the STG set with the largest

mean coefficient of variation. Therefore, for convenience, we will continue to refer to

those distribution types without specifying this again.
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Table 4.1: Time required to generate empirical longest path distributions for Cholesky
graphs with different choices of weight distributions. Recall that n is the size of the graph,
N is the number of tiles along both axes of the matrix, and nb is the tile size.

nb = 128 nb = 1024

N n Normal Gamma Uniform Normal Gamma Uniform

5 35 0.2s 0.3s 0.1s 0.1s 0.2s < 0.1s
10 220 1.1s 1.6s 0.4s 0.9s 1.3s 0.4s
15 680 3.4s 5.0s 1.3s 3.3s 4.9s 1.2s
20 1540 8.2s 11.8s 3.0s 8.1s 11.9s 3.0s
25 2925 15.5s 22.6s 5.9s 21.0s 30.9s 7.4s
30 4960 28.2s 41.2s 10.6s 38.3s 57.5s 13.7s
35 7770 47.4s 1m 7s 17.3s 1m 5s 1m 38s 23s
40 11480 1m 7s 1m 38s 26s 1m 35s 2m 20s 33s
45 16215 1m 35s 2m 22s 37s 2m 11s 3m 18s 46s
50 22100 2m 10s 3m 12s 50s 3m 1s 4m 30s 1m 4s

We have largely avoided discussion of runtimes thus far in this thesis because our

Python code is not—and is not intended to be—optimal. However, this is an area in

which trade-offs between efficiency and accuracy typically need to be made, so some

baselines will be necessary going forward. Therefore in Table 4.1 we state how long it

took to generate the empirical longest path distributions for the Cholesky graphs with

different weight distributions; the data presented are for s = 1 only as trends were similar

for s = 4. (Recall that, unlike in previous chapters, different choices for the parameters s

and nb may correspond to different schedule graph topologies, so different runtimes may

be expected). There will be some discussion about how these runtimes compare to certain

heuristics later.

Metrics. To quantify the similarity between one empirical longest path distribution E1

and another E2 corresponding to a different choice of weight distribution, we typically

first compared their respective means and variances as a rough guide. Then, as a more

rigorous metric, we used the Kolmogorov-Smirnov (KS) statistic D, a standard statistical

measure that quantifies the difference between F1, the empirical distribution function of

E1, and its counterpart F2 through

D = sup
x

|F1(x)−F2(x)|,
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i.e., the maximum distance between the two. Note that D ∈ [0,1] and greater values

indicate a greater distance between the two functions. There are many similar metrics

that could have been used instead, but the KS statistic is intuitively straightforward to

interpret and Canon and Jeannot [34] showed that it is strongly correlated with many

other commonly-used metrics. Moreover, following the analysis of Van Slyke [133], we

can quantify the accuracy of an empirical longest path distribution compared to the true

longest path distribution in terms of the KS statistic. For example, with 100,000 samples

we can say, with 95% probability, that the maximum distance between the two is less than

0.005.

How similar? For the Cholesky graphs, to convey an intuitive understanding of the

similarity between the longest path distributions for the different choices of weight distri-

butions we present Table 4.2, which gives some summary statistics in the different cases.

The data are for the subset of graphs with s = 1 and nb = 128 only but the most immediate

takeaway was apparent for the other parameter choices as well: the statistics are largely

very similar. For the smallest graphs, skewness and especially kurtosis can vary consider-

ably, but this appeared to stabilize as the graphs grew. Kolmogorov-Smirnov (KS) statistics

for the empirical distribution functions corresponding to the different weight distributions

largely supported this intuition. The greatest differences we observed were for gamma

and uniform weights, giving a KS statistic of D = 0.16 between the two empirical cdfs in

the worst case; however, that was an outlier and the average value was just over 0.01. On

the whole, the magnitude of the KS statistics also decreased as the graphs grew larger.

We observed similar behavior for the graphs in the STG set. Again, the greatest differ-

ences were for gamma and uniform weights, so the figures that follow are for that case.

The empirical means were never more than 0.7% different, and on average much smaller.

While the standard deviations differed by about 2.8% on average and 15% in the worst case,

the average KS statistic for the two empirical cdfs was less than 0.01 and the worst just

under 0.1. Altogether this suggests that the answer to the first question posed at the top of

this section is that the longest path distributions are usually very similar, no matter which

distributions the weights follow, as long as the weight means and variances are fixed.

Which distribution? As noted previously, large-scale experimental studies have been

done before on this topic for randomly generated graphs, so we decided to focus only on
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Table 4.2: Summary statistics of empirical longest path distributions for Cholesky graphs
with s = 1 and nb = 128. Trends in the data were similar for other parameter choices.

N n Weight Dist. Mean Median Std dev. Skewness Kurtosis

5 35
Normal 1017.0 1016.4 12.3 0.290 0.172
Gamma 1017.1 1016.3 12.5 0.380 0.270
Uniform 1017.2 1016.8 12.3 0.242 −0.144

10 220
Normal 2343.0 2342.7 19.6 0.110 0.017
Gamma 2342.9 2342.4 19.7 0.160 0.040
Uniform 2343.2 2343.0 19.6 0.080 −0.083

15 680
Normal 3601.5 3601.0 21.7 0.185 0.081
Gamma 3602.0 3601.2 22.1 0.241 0.197
Uniform 3601.8 3601.4 21.4 0.122 −0.011

20 1540
Normal 5863.1 5861.7 31.6 0.297 0.180
Gamma 5865.3 5863.5 32.4 0.318 0.158
Uniform 5862.8 5861.4 31.2 0.277 0.127

25 2925
Normal 9073.6 9072.3 40.3 0.194 0.098
Gamma 9076.4 9075.1 41.0 0.214 0.109
Uniform 9073.0 9071.8 39.7 0.181 0.111

30 4960
Normal 13574.5 13575.6 45.7 0.352 0.276
Gamma 13578.4 13575.6 46.9 0.354 0.332
Uniform 13573.6 13571.3 45.0 0.323 0.260

35 7770
Normal 20196.9 20193.3 58.9 0.381 0.335
Gamma 20200.1 20196.5 59.7 0.385 0.324
Uniform 20196.4 20192.9 58.3 0.372 0.317

40 11480
Normal 28835.0 28830.1 72.0 0.406 0.311
Gamma 28837.9 28832.7 73.1 0.430 0.357
Uniform 28834.3 28829.7 71.4 0.402 0.360

45 16215
Normal 39165.5 39158.8 85.4 0.487 0.483
Gamma 39168.2 39161.9 86.0 0.484 0.504
Uniform 39164.6 39157.8 85.0 0.457 0.380

50 22100
Normal 52224.0 52216.0 100.0 0.497 0.480
Gamma 52227.6 52219.3 101.0 0.508 0.534
Uniform 52223.8 52215.9 99.8 0.483 0.471
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the Cholesky graphs. Informally, it seems reasonable to surmise that the data presented

in Table 4.2 (for those graphs with s = 1 and nb = 128) are at least roughly normal: the

median is very close to the mean and both skewness and (excess) kurtosis are close to

zero. This is reinforced by Figure 4.3a, which plots histograms of the data. Inspecting

the visualizations, we see that the shapes of the distributions are very similar for all three

weight choices, supporting our previous conclusions. Moreover, they all appear to be

roughly normal, albeit with a consistent leftward skew for the larger graphs.

However, when we study Figures 4.3c and 4.3d, which visualize the distributions for

the graph subsets with nb = 1024, we are forced to draw very different conclusions: many

of the distributions are clearly far from normal—or indeed any of the other distributions

suggested in the literature. The distributions in question appear bimodal, with spikes to

the left of the means. It is not entirely clear what causes this behavior; further investigation,

including for applications other than Cholesky factorization, would be useful in the future.

Whatever the underlying cause, it is perhaps most striking to observe that for other graphs

with the same parameter choices the distributions are still approximately normal. This

suggests that the shape of the longest path distribution can differ greatly even for schedule

graphs arising from similar task graphs. Moreover, from a practical perspective, this makes

it difficult to anticipate when the normality assumption will be reasonable and when it

will not be.

4.5.3 Comparison of existing heuristics

Our experience in the previous section suggests that in general the longest path distri-

bution is only lightly influenced by the distributions that the individual weights follow.

On one hand, this supports the use of CLT-based heuristics such as Sculli’s method and

CorLCA which are not sensitive to the weight distributions. However, note that this also

negates one of the traditional drawbacks of the MC method—namely, the need to know all

weight distributions exactly—since we can simply sample from any distribution type and

get a very close approximation. Furthermore, unlike MC, CLT-based heuristics assume

that the longest path distribution will be roughly normal, which our experiments have

shown may not always be true—and, perhaps more importantly, that it is difficult to

anticipate when this will and will not be the case.
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(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 4.3: Histograms of empirical longest path distributions for Cholesky schedule
graphs in the three cases that the weights follow normal, gamma or uniform distributions.
Vertical black lines indicate the mean and are included as a visual aid only. Recall that N is
the number of tiles along both axes of the matrix, nb is the tile size, and s is the number of
GPUs in the target platform.
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This would appear to imply that MC is a more fruitful framework for approximating the

longest path distribution than CLT-based heuristics. But this neglects the main drawback

of MC: namely, the computational effort required, especially when many samples are

required. As ever, in practice, a trade-off between accuracy and efficiency is likely to be

necessary. Therefore in this section we evaluate several existing heuristics (and bounds)

with regard to both the quality of their solutions and how long it took to obtain them. In

particular, the methods that we consider here are:

• Sculli’s method, as the fastest and most basic example of its type;

• CorLCA, in order to gauge the importance of taking path dependence into account;

• Kamburowski’s bounds on the mean and variance, since they have received relatively

little attention elsewhere.

First, a warning: results in the previous section suggest that the longest path distribution

typically only varies slightly for different weight distributions. But it is not identical either.

Assuming that weight distributions are not known exactly, this means that there will always

be some “fuzziness” surrounding the actual distribution. Put simply: there is a limit on

the possible accuracy of the methods above, since we can’t ever know the true solution

when the weight distributions aren’t known. For the remainder of this section we will

assume that the weights actually follow gamma distributions and treat the empirical

solution obtained via MC with 100,000 samples as the reference longest path distribution.

However, this caveat should always be borne in mind. (Note that Kamburowksi’s bounds

do not technically hold for gamma weights, so in this section we are evaluating them as an

approximation only, although they were very rarely violated.)

MC10/100. In Table 4.1 we summarized the runtimes required to obtain empirical distri-

butions for the Cholesky graph set with 100,000 MC samples, but we did not consider a

simple question: how many samples do we actually need in order to get a good approxi-

mation? Figure 4.4 illustrates the convergence of the MC method for increasing numbers

of samples; the data presented are for the subset with s = 4, nb = 1024 and gamma weights

but conclusions were similar in all other cases. Based on the figure, it appears that we

typically capture most of the important features of the distribution after around 1000

samples, and often considerably fewer. Therefore, as a comparison for the CLT-based
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heuristics, we also considered the solutions obtained by the MC method with 10 and

100 samples, which we will refer to as MC10 and MC100 (respectively). Furthermore, to

compute MC10/100 we sampled the weights from uniform distributions, even though the

reference solution is for gamma weights; the idea being that the true distributions may be

unknown so, with the conclusions of the previous section in mind, it is sensible to simply

use the cheapest distribution type for the MC.

Cholesky graphs. With the exception of Kamburowski’s upper bound, which typically

overestimated it by around 5–20%, all of the heuristics and bounds gave highly accurate

estimates of the longest path mean for the Cholesky graphs, almost always being within

1% of the true solution and often much tighter. Interestingly, this was true even for DAGs

whose empirical longest path distributions were far from normal, such as those in Figures

4.3c and 4.3d. This accuracy is impressive, although it is worth noting that even the classic

CPM bound was similarly accurate for these graphs. As to the comparative performance,

Sculli’s method and CorLCA were consistently tighter than Kamburowski’s lower bound

(in turn always better than the CPM), but MC10 and MC100 were usually superior to both,

especially for the larger graphs.

Despite the success for the mean, estimates of the variance were typically far less

impressive, as shown in Figure 4.5 (note the logarithmic scale on the y-axes). We see that

Kamburowski’s bounds, especially the lower, were consistently very loose. CorLCA was

clearly superior to Sculli’s method, although it became noticeably less accurate as the

graphs grew in size. Once again, however, the two MC heuristics were the best overall,

with particularly good comparative performance for larger graphs.

Sculli’s method and CorLCA compute only the expected value and variance of the

longest path distribution, under the assumption that it will be roughly normal, but this did

not always appear to be the case for the Cholesky graphs. Formalizing this, we compared

the reference empirical distribution functions to normal cdfs with means and standard

deviations computed via Sculli’s method and CorLCA; Figure 4.6 presents the KS statistics

obtained for Sculli’s method, CorLCA and MC10/100 (in the latter case, we used the

empirical distribution function corresponding to the MC data rather than the normal

cdf). Some trends are apparent for all parameter choices; for example, MC10/100 did

much better than the CLT-based heuristics for the largest graphs. But there is also some
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Figure 4.4: Progression of MC solution with increasing numbers of samples for Cholesky
graphs with gamma-distributed weights, s = 4 and nb = 1024. Trends were similar for
other weight distributions and choices of s (number of GPUs) and nb (tile size).
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(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 4.5: Bounds and approximations to the longest path variance for Cholesky graphs
with different combinations of s (number of GPUs) and nb (tile size). Yellow shaded area
defines region within Kamburowski’s upper and lower bounds. Black curve indicates
reference solution. Note the logarithmic scale on the y-axes.
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(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 4.6: Kolmogorov-Smirnov (KS) statistics of Sculli’s method, CorLCA and MC heuris-
tics for Cholesky graphs with different combinations of s (number of GPUs) and nb (tile
size). Statistics computed though comparison with reference empirical distributions.

notable variation, such as the fact that CorLCA was uniformly better than Sculli’s method

for nb = 1024—more than eight times better for one graph—but they both do about as

well as each other for nb = 128. We suspect the cause of this disparity lies in the fact that

CorLCA is known to perform poorly when there are many paths of similar length; as we

will see in the next section, this is the case for both tile sizes but it is far more pronounced

for nb = 128.

Of course, accuracy is only ever one of the criteria by which we evaluate the quality of

heuristic solutions; efficiency is always vitally important as well. Therefore in Figure 4.7 we

illustrate the runtimes of our implementations. Note that, for context, the timings are nor-

malized as multiples of the time required to compute the CPM bound (which was always

the cheapest). The most notable trend is that CorLCA is initially no more expensive than

the others but eventually grows far beyond them, especially for nb = 1024. This means that

MC10 and MC100 were both cheaper and more accurate for the largest graphs. However,

it is difficult to weigh this timing data against the comparative accuracy of the methods
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(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 4.7: Execution time of heuristics and bounds for Cholesky graphs with different
combinations of s (number of GPUs) and nb (tile size). Timings are normalized as a
multiple of the CPM bound runtime. Kamb. represents time for both Kamburowski’s mean
and variance bounds.

without making any assumptions about the context in which they are used. Moreover, we

emphasize again that these timings are implementation-specific so should be treated with

caution. Although not indicated by the figure, since the times are normalized, it should be

noted that all of the heuristics and bounds were considerably cheaper than generating the

full empirical distribution using 100,000 samples; even CorLCA for the largest graph with

nb = 1024 was about 20 times faster.

STG set. As with the Cholesky graphs, we found for the STG set that computed approxi-

mations of the mean were typically highly accurate for all of the heuristics and bounds.

The comparative performance differed slightly, with CorLCA being the best this time, but

the average error relative to the reference solution was less than 1% for Sculli’s method,

CorLCA, MC10/100 and Kamburowksi’s lower bound, so all could be considered successful.

Estimates of the variance were again much less accurate, however. Figure 4.8 shows the
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mean percentage error, relative to the reference solution, for the relevant bounds and

heuristics, presented according to the mean coefficient of variation of the graph weight

RVs µv . Note that Kamburowski’s lower bound is omitted because it was extremely poor,

almost always being zero (and therefore giving an average error > 99%). We see that the

performance of the three CLT-based heuristics degraded as µv increased, whereas the

error for MC10/100 remained roughly the same; both of these trends are perhaps to be

expected based on the analysis in earlier sections. Overall, CorLCA was the standout

performer, although MC100 was slightly better for µv = 0.3. This concurs with Figure 4.9,

which shows the mean KS statistics obtained by Sculli’s method, CorLCA and MC10/100

(computed in the same manner as for the Cholesky graphs). We see that CorLCA was

consistently superior to the others and, on average, was highly accurate.

Comparative runtimes for the heuristics were similar to the trends for the smallest

Cholesky graphs indicated by Figure 4.7. MC100 was the most expensive, being about

8.4 times as expensive as the CPM bound on average for the entire set (of 7200 DAGs).

The corresponding values for Kamburowski’s bounds, Sculli’s method, CorLCA and MC10

were 5.5, 2.8, 3.6 and 4.5. Again, it is difficult to weigh accuracy against efficiency without

a specific application area in mind, but, given that it was the best-performing and the

second cheapest (after Sculli’s method, discounting the CPM bound itself), it seems safe to

say that CorLCA achieved a good balance between the two objectives for the STG set. The

conclusion then would seem to be that it is the best heuristic for these graphs (of those

considered). However, there is a big caveat here concerning the MC method: although

MC10 and MC100 were both more expensive and less accurate than CorLCA, note that the

latter was less than twice as expensive as the former since our code is largely vectorized.

Moreover, after several hundred samples, the MC solution typically became more accurate

than CorLCA. Therefore a user may decide that, for example, MC1000 better meets their

desired efficiency-accuracy trade-off than CorLCA because the runtime increase is not as

drastic as one may at first assume.

4.5.4 Evaluating RPM

Our experience so far suggests that, at least for certain graphs, avoiding the normality

assumption of the CLT-based heuristics may be wise. The MC method would therefore

seem to be the superior approach in such cases. However, those graphs for which we found
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Figure 4.8: Mean percentage error in variance estimates of Sculli’s method, CorLCA,
Kamburowski’s upper bound and MC10/100 for STG set with different mean coefficients
of variation µv . K. UPPER refers to Kamburowski’s upper bound. Note that each bar
represents an average over 7200/4 = 1800 graphs.

Figure 4.9: Mean Kolmogorov-Smirnov (KS) statistics of Sculli’s method, CorLCA and
MC10/100 for STG set with different mean coefficients of variation µv . Statistics computed
though comparison with reference empirical distributions.
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that the CLT-based heuristics were poor—i.e., the large Cholesky graphs—are precisely

those for which taking many MC samples is also likely to be expensive. Heuristics which

are cheaper than the MC method and do not make assumptions about the longest path

distribution would therefore appear to be eminently useful. In this section, we evaluate

whether the Reduce Paths, then Maximize (RPM) framework that we described in Section

4.4 is capable of achieving this aim.

Variants. The RPM framework is very broad, so we should specify precisely which vari-

ants that we considered here. Recall that the heuristic comprises two stages: first, a

moderately-sized set Q of candidate longest paths are identified, then their maximum

is approximated. For the latter, we always used the MC method based on generating

correlated normal RVs that was described in Section 4.4.2. We did 1000 realizations of the

path length RVs since they were cheap to generate and this proved more than adequate for

convergence; further comments will be made about the runtime implications later. Since

the second step is always the same, the RPM variants are therefore defined by how they

identify the set of longest path candidates Q. The four methods that we considered here

were:

• SIM10 (for simulation), defining Q as those paths which were observed to be critical

during 10 MC realizations of the graph (with uniform weights);

• SIM100, ditto above but with 100 realizations;

• DOM10 (for dominance), computing Q using Algorithm 4.1 with K = 10;

• DOM100, ditto above but with K = 100.

Note that the size of Q is therefore bounded above by either 10 or 100, depending on the

number of MC samples or the value of K in Algorithm 4.1. (Of course, the natural name

for SIM10/100 would be MC10/100, but we avoid this in order to prevent confusion with

the heuristics by those names that have already been defined in this chapter.)

Cholesky graphs. Figure 4.10 shows the Kolmogorov-Smirnov (KS) statistics obtained

by the four RPM variants for the Cholesky graph set (where, as before, the MC method

with 100,000 samples and gamma distributed weights is used to compute the reference
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(a) s = 1, nb = 128. (b) s = 4, nb = 128.

(c) s = 1, nb = 1024. (d) s = 4, nb = 1024.

Figure 4.10: Kolmogorov-Smirnov (KS) statistics for RPM variants and MC10/100 for
Cholesky graphs with different combinations of s (number of GPUs) and nb (tile size).
Statistics computed though comparison with reference empirical distributions.

solution). Included also in the figure are MC10 and MC100, which are as defined in

previous sections. We see that none of the RPM variants improved on the corresponding

MC heuristics (i.e., with 10 or 100 samples) and were, in fact, almost always considerably

worse. As for the CLT-based heuristics, performance degraded as the size of the graphs

increased, although to an even more pronounced extent; for s = 4 and nb = 128, the KS

statistics all converged to 1.0 after about N = 20.

Although this negative result is obviously unfortunate, it does serve to illustrate certain

behavior that may not be apparent for randomly generated graphs. Fundamentally, the

problem is the regularity of Cholesky factorization task graphs: there are only four different

task types and the same amount of data is transmitted for each task. Combined with the

fact that the target platforms for which the schedules were computed comprised multiple

identical processors of only two different types, the weights of the schedule graph were

therefore relatively homogeneous. This in turn means that there were many paths of

similar length, especially for large graphs, and therefore many different paths that could
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become critical. This is illustrated by Table 4.3, which states the number of different paths

that we observed to be critical when generating the empirical longest path distributions in

Section 4.5.2 (recall that 100,000 samples were used). For all but the smallest graphs with

nb = 128 we see that almost every new realization of the weights gave a new critical path.

This means that considering any small set of paths is unlikely to be useful, since there are

so many paths with similar likelihood of being critical. Even for nb = 1024, the number of

observed critical paths was far greater than 100 (the maximum size that we allowed for the

candidate path set Q).

The obvious solution would seem to be using larger values of K in Algorithm 4.1. The

problem is that the computational cost of the algorithm also grows unacceptably high.

For the largest graphs, even running Algorithm 4.1 with K = 100 took almost as long as

generating the reference MC solution (i.e., with gamma weights and 100,000 samples) and

it seems likely that very large values of K would be required given the data in Table 4.3.

Moreover, constructing the covariance matrix used to generate the correlated path length

RVs was even more expensive (although realizing the values afterward was cheap even

for large numbers of samples). We experimented with neglecting this step and simply

realizing the path lengths as though they were independent but this did not improve

performance for the Cholesky graphs and made it worse when RPM does well (see below).

Altogether, then, it seems safe to conclude that RPM is ill-suited for the Cholesky graphs.

STG set. The RPM variants were much more accurate for the graphs from the STG set, as

shown in Figure 4.11, which presents their mean KS statistics compared to the reference

solutions. In particular, we see that they successfully improved on the corresponding MC

heuristics. Also included in the figure for reference, however, is CorLCA and we see that it

again dominated the comparison, except for µv = 0.3 when it was very slightly bettered

by DOM100. Moreover, although relatively less so than for the large Cholesky graphs,

the RPM variants were again expensive. Compared to CorLCA, on average SIM10 was

1.5 times as expensive; the corresponding values for DOM10, SIM100 and DOM100 were

2.4, 3.3 and 39.2. At this point we should reiterate the warnings that we have proffered

throughout about the efficiency of our own implementations, but it is safe to say that

the RPM heuristic is unlikely to be a practical alternative to CorLCA unless more efficient
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Table 4.3: Number of paths that were observed to be critical for Cholesky graphs (with
s = 1) using MC method with 100,000 samples and different weight distributions. Results
were similar for s = 4.

nb = 128 nb = 1024

N n Normal Gamma Uniform Normal Gamma Uniform

5 35 9 10 6 1 1 1
10 220 92 107 51 7 6 5
15 680 1313 1489 960 67 69 50
20 1540 19452 21140 17860 269 267 240
25 2925 86475 87114 85988 943 979 894
30 4960 91839 92730 91421 1771 1800 1646
35 7770 94318 94946 94302 1131 1141 978
40 11480 89886 90542 89468 6808 7061 6303
45 16215 88399 89334 88181 2538 2635 2381
50 22100 92720 93217 92176 4266 4434 3975

means of identifying longest path candidates and approximating their maximum can be

found.

4.6 CONCLUSIONS AND FUTURE WORK

To summarize, we took the following conclusions from the empirical investigation that

was described in this chapter.

1. Assuming that weight means and variances are fixed, the longest path distribution

is usually very similar for different choices of weight distributions. This justifies the

use of heuristics such as CorLCA which do not require them but also implies that

MC simulation with any choice of weight distributions is likely to be accurate.

2. The assumption that the longest path distribution will be normal, which underlies

many existing heuristics, is not always safe. Indeed, we saw that the distribution

shape could vary drastically even for DAGs which on the surface may appear to be

very similar to one another. Heuristics which do not assume that the longest path

distribution will take a certain form would therefore be helpful.

3. CorLCA was the outstanding performer of the CLT-based heuristics. It was far more

accurate than Sculli’s method for the randomly generated graphs and only slightly
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(a) µv = 0.01. (b) µv = 0.03.

(c) µv = 0.1. (d) µv = 0.3.

Figure 4.11: Mean Kolmogorov-Smirnov (KS) statistics achieved by CorLCA, MC10/100
and RPM variants for the STG set with different mean coefficients of variation µv . Statistics
computed though comparison with reference empirical distributions.
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more expensive in our implementation. Sculli’s method was significantly cheaper for

the larger Cholesky graphs but both were extremely inaccurate in that case anyway.

Kamburowski’s bounds appear to be of limited use as heuristics when the weights

are not normally distributed since CorLCA in particular was consistently cheaper

and more accurate. Furthermore, the lower bound on the variance was always so

loose as to be entirely useless.

4. Supporting the first point, we found that the MC10/100 heuristics performed well

throughout, even though the weights were sampled from uniform distributions and

the reference solutions were for gamma distributed weights. Moreover, they were

the only heuristics that were not wholly inaccurate for the large Cholesky graphs.

This suggests that a small number of MC samples are often adequate in practice

to get good approximate solutions. More broadly, we found that MC was much

more efficient compared to alternative heuristics than one might suppose. All of the

previous warnings about our implementations should be borne in mind but there

is perhaps a salient point here: in general, MC methods are well-suited to modern

computer architectures and software.

5. The proposed RPM heuristic framework may be useful in some circumstances but

there are practical hurdles that must be overcome in order to make it more widely

applicable. The best RPM variants evaluated here were accurate, albeit expensive,

for our randomly generated graph set. However, they were completely ineffective

for all but the smallest Cholesky graphs since the number of paths that must be

considered was very large. Cheaper methods for approximating both the set of

longest path candidates and their maximum are therefore clearly needed.

A fundamental issue with all of the heuristics and bounds discussed in this chapter is

that they assume the weights of the graph are independent. As we argued earlier, this is

unlikely to be entirely correct in scheduling contexts. Efficient new heuristics that do not

make this assumption would therefore be of obvious interest in the future.



CHAPTER 5

STOCHASTIC SCHEDULING

In the previous chapter, we studied the problem of predicting the makespan of a schedule

when the computation and communication times are not known precisely but instead

are expected to follow certain probability distributions. But we did not address a very

important related question: how do we actually compute a schedule which is likely to

be short given the variation in the schedule costs that we expect to see? In this chapter,

we consider this important but difficult stochastic scheduling problem. However, the

structure differs somewhat from earlier ones in that we do not present a new method but

rather describe existing scheduling heuristics, before proposing and evaluating a small

modification to one such heuristic.

5.1 A MULTIOBJECTIVE PROBLEM

Suppose that we have a task DAG G and a heterogeneous target platform T . How do

we compute a good schedule for G on T ? We have already seen many different ways to

approach this problem in earlier chapters. But all of these assume that the computation

and communication costs are modeled as scalars. What should we do if we know that the

costs can be more accurately modeled as random variables (RVs) instead? Can we use this

information to compute a better schedule? Moreover, what does a better schedule even

mean in this context, given that, if all the costs are stochastic, then the schedule makespan

will be as well?

153
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When all schedule costs are scalars, it is clear what an optimal schedule looks like: π∗

is optimal if its makespan is minimal over the set of all feasible schedules. There are two

issues with extending this definition to the stochastic scheduling problem.

1. As we saw in the previous chapter, computing the makespan distribution of even a

single schedule with stochastic costs is an extremely difficult problem, proved to be

#P-complete by Hagstrom [60].

2. How do we compare the quality of multiple schedules when their makespans are

stochastic?

The first of these means, in particular, that the optimization problem of finding π∗ is

at least #P-complete itself and therefore finding an optimal solution is likely infeasible,

however we define it. Nevertheless, as we also saw in the previous chapter, good heuristics

for approximating the makespan distribution exist, so this may not be fatal if we focus

only on achieving approximate solutions.

The second issue is more conceptual and there are clearly many different ways that

we could compare schedule makespan distributions. Fundamentally, though, a good

stochastic schedule should have a high probability of returning a short makespan. In

other words: we want it to have a short expected length and also want it to be robust—

resilient to stochasticity in the cost estimates. The obvious metric for the first of these

objectives is the expected value of the makespan distribution; clearly, we want this to

be as small as possible. However, many metrics have been proposed in the literature for

quantifying robustness. Perhaps the most prominent is the slack, which has several slightly

different definitions but is typically defined for a task as the maximum length of time

that its execution can be delayed without increasing the makespan, and for a schedule

as the mean of all task slacks [27], [115]. Other examples include makespan differential

entropy [27], the miss rate [115], stochastic robustness [113], and many others. Canon and

Jeannot [33] compared several common robustness metrics empirically, concluding that

the intuitive choice of the makespan standard deviation was highly correlated with many

of the more complex alternatives (although interestingly not the slack in particular). Given

that it is typically straightforward to compute, we will therefore use this as the default

metric for quantifying schedule robustness from now on—i.e., we say that one schedule is

more robust than another if it has a smaller makespan standard deviation.
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Unlike the scalar case, we now have a multiobjective optimization problem: we want

to minimize both the makespan expected value and its standard deviation. Ideally, of

course, we should like a schedule which does both. Unfortunately, such a solution will only

exist if both objectives are equivalent, and it should be clear intuitively that minimizing

a schedule’s length and its robustness are not necessarily the same thing—although,

interestingly, it has often been observed empirically that the two are correlated to some

extent and shorter schedules tend to be more robust than longer ones [33]. (This is

perhaps counterintuitive since it is often assumed that good schedules must be in some

sense “finely tuned”.) Nonetheless, for any multiobjective optimization problem the goal

is to find a solution in the Pareto set, those solutions which are superior to all others in

regards to at least one of the objectives; how we weigh the importance of the two objectives

then determines which of these would be viewed as optimal. Some stochastic scheduling

heuristics explicitly attempt to help users navigate this trade-off, while others focus solely

on optimizing only one of the two objectives (usually the expected length).

Note that here, as in the previous chapter, a schedule is assumed to define which

tasks each processor should execute and in what order. This is sometimes referred to as

a fullahead schedule [148]. The alternative would be an assignment schedule, in which

processor selections are respected but the order is decided at runtime depending on when

tasks become available for execution. In general, it isn’t clear which approach is preferable.

Canon et al. [35] studied the problem and found that there was little difference between

fullahead and assignment schedules in terms of makespan expected value, although

assignment schedules were typically less robust. For the remainder of this chapter, we

will assume that all schedules are fullahead schedules, however a systematic investigation

of the general problem of how offline scheduling information should actually be used at

runtime is one of the areas of future research identified in Chapter 6.

5.2 HEURISTICS

At a high level, heuristics for the stochastic scheduling problem can be divided into two

categories: those that convert the problem into a deterministic one in order to compute a

schedule, and those that operate directly with the stochastic costs. (Other taxonomies are

of course possible.) The first two examples described below are of the first type, whereas
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the others are examples of the second. Although we describe only four heuristics here,

many others exist. Evolutionary algorithms, for example, have frequently been proposed,

such as the Multi-Objective Evolutionary Algorithm (MOEA) from Canon and Jeannot

[33], a refinement of the NSGA-II framework [45]. However, these tend to be expensive:

although the MOEA outperformed all alternatives, including HEFT [131], in a simulated

comparison, it took on average more than 1000 times as long as HEFT to return a schedule.

With the partial exception of Monte Carlo Scheduling (see below), which is an iterative

method that may be expensive, the heuristics discussed below are highlighted because

they are reported to perform well with low time-complexity.

SHEFT. The classic way to convert a stochastic scheduling problem into a deterministic

one is to simply replace all of the stochastic costs with their expected values; indeed,

this is often implicitly assumed to actually be the case for many deterministic heuristics.

However, alternative scalars that more usefully describe the cost distributions could be

used instead. An example can be found in the SHEFT (for stochastic) heuristic from Tang et

al. [126]. SHEFT replaces a generic stochastic schedule cost W , with mean µ and variance

σ2, by the output of a function S, where

S(W ) =
µ+σ, if σ≤µ,

µ+µ/σ, otherwise.
(5.1)

The heuristic then proceeds exactly as in HEFT [131]. As remarked in Chapter 3, adding

the standard deviation to the mean in this way evokes the classic Upper Confidence Bound

(UCB) rule for multi-armed bandit problems [14] and is done in an implicit attempt to

obtain a schedule which minimizes both the makespan mean and standard deviation.

Simulations described in the original paper suggest that SHEFT typically obtains schedules

which are both shorter and more robust than HEFT; we will evaluate this claim ourselves

in Section 5.4.

Of course, although HEFT is used by default, any other deterministic heuristic could

be used instead. Indeed, SHEFT is an instance of a more general heuristic framework

which comprises the following two steps:

1. All schedule costs are scalarized via some function.

2. A deterministic heuristic is applied to the resulting scalar task graph in order to

obtain a schedule.
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Clearly there are many possible choices that could be considered within this broad frame-

work.

Monte Carlo Scheduling. Whereas SHEFT scalarizes the costs once in order to obtain a

single schedule, Monte Carlo Scheduling (MCS) from Zheng and Sakellariou [148] repeats

the procedure many times in order to generate a body of potential schedules, with the

best among them then chosen. Instead of scalarizing the costs through some function,

they are sampled randomly according to their distributions. For each complete sampling

of the costs, a deterministic heuristic (e.g., HEFT) is used to compute a schedule, which

is added to a set of candidate schedules only if it has not been seen before and passes

an inexpensive fitness check. For the latter, Zheng and Sakellariou suggest using the

classic CPM bound (see Chapter 4) on the expected value of the makespan; a schedule

is retained only if its bound is not much greater than the smallest seen so far. Once the

procedure has been repeated a specified number of times, the makespans of the candidate

schedules are computed through MC simulation (again, see Chapter 4) and the one with

the smallest expected value is selected. Note that, in theory, any other criteria could be

used for selection from the candidate schedules instead; for example, we may want the

most robust schedule, or that which optimizes some function of the two. In such a case, it

would also be sensible to modify the fitness check to reflect the selection criterion as well.

Numerical experiments conducted by Zheng and Sakellariou suggest that, assuming

enough realizations of the costs are performed, MCS almost always achieves superior

schedules to alternative heuristics. The issue, as with most similar methods that search

the solution space, is the computational effort. For each realization of the costs, we need

to apply the deterministic heuristic, which is an O(n2) operation for HEFT in particular

and unlikely to be cheaper for any competitive alternative. We also need to approximate

the makespan distributions for each of the candidate schedules, which can be expensive,

especially if the graph is large, although note that in principle we could use an alternative

heuristic rather than MC; our experimental comparison in the previous chapter suggests

that CorLCA [34] in particular may be cost effective.

Rob-HEFT. One issue with the scalarization approach of SHEFT described above is that

it in some sense accords the mean and standard deviation the same importance, when we

may wish to prioritize the expected schedule length over robustness, or vice versa. Another



158 | STOCHASTIC SCHEDULING

extension of HEFT which permits finer weightings of the two objectives is Rob-HEFT (for

robust) from Canon and Jeannot [34]. The algorithm takes an angle α ∈ [0,90] which

represents the user’s desired trade-off between makespan expected length and robustness;

if α= 0, only the standard deviation is prioritized and, if α= 90, only the expected value.

Both phases of the standard HEFT algorithm are then modified in an attempt to obtain

the schedule which best meets this specification. In the processor selection phase, the

mean and standard deviation of the current schedule makespan distribution are estimated

for each of the q processors, assuming that they are chosen for the current task. These

makespan approximations can be done using any of the methods discussed in the previous

chapter; CorLCA is the suggested default but MC was also considered experimentally. Each

of the q makespan estimates gives us a point (mean, standard deviation) in the criteria

space. We disregard the dominated points and rescale the others so that they fit in the unit

square, then find the one which is closest to the straight line starting from the origin that

makes angle α with the x-axis; the task is then scheduled on the corresponding processor.

If α= 0, the task is scheduled on the processor which minimizes the schedule standard

deviation and, if α = 90, the expected value. Likewise, in the task prioritization phase,

upward ranks are computed for both cost means and standard deviations, then aggregated

in a similar manner to compute priorities.

Stochastic Dynamic Level Scheduling. Li et al. [75] proposed a new heuristic called

Stochastic Dynamic Level Scheduling (SDLS), an extension of the classic deterministic

DLS heuristic [117]. The basic idea is to use Clark’s equations (4.12) and (4.13) in order to

deal with the stochastic costs directly; SDLS therefore assumes that the costs are normally

distributed, although, as our experience in the previous chapter suggests, it may still

be applicable when this is not the case. First, a counterpart to the upward rank called

the stochastic bottom level which represents the distribution of the longest path from a

given task to the sink is computed for all tasks. This is done using Clark’s equations and

disregarding path correlations, so is essentially equivalent to Sculli’s method (although

computed in the opposite direction from the presentation in the previous chapter). Then,

in the next phase of the algorithm, SDLS considers the current set of tasks ready for

scheduling (initialized with the entry task) and computes for all ready task-processor pairs

an RV called the SDL value which is a function of the task’s stochastic bottom level. The
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task-processor pair whose SDL value is stochastically greater than the SDL values of all

others is then selected, and the indicated task scheduled on the suggested processor; here,

an RV is considered to be stochastically greater than another if the 90th percentile of the

former is greater than the 90th percentile of the latter.

5.3 ACCELERATING MCS

The MCS heuristic is an iterative method that, given enough time, will almost certainly

return a better schedule (however we choose to define it) than the deterministic heuristic

that it employs. However, since the computational cost relative to the deterministic heuris-

tic scales with the number of iterations, it is natural to ask if it is possible to accelerate the

convergence of the algorithm. In other words: for a given number of schedule production

steps, can we increase the quality of the returned schedule?

MCS generates new schedules by scalarizing the costs according to their distributions.

An alternative way to scalarize the costs is exemplified by the SHEFT heuristic: a generic

RV cost with mean µ and standard deviation σ is scalarized as µ+σ, assuming that σ<µ,

with a small adjustment in the other case. This is claimed to lead to shorter, more robust

schedules than using the mean alone. More broadly, we can define a family of possible

scalarization functions of the form S(µ,σ,c) = µ+ cσ, for some scalar parameter c. It is

not intuitively clear that the choice c = 1 used in SHEFT is any more effective than others.

Therefore it may be sensible to consider many different values. In particular, rather than

scalarizing schedule costs by sampling from their distributions in MCS, we could apply

the S function for different values of c instead. We will refer to this alternative scalarization

method as UCB (because of its similarity to the UCB rule for multi-armed bandit problems

[14]) and the standard MCS method as MC (for Monte Carlo). Although it is difficult to

justify why we should expect UCB to converge to a good schedule more quickly than MC,

small-scale testing, described below, suggests that this may often be the case.

5.3.1 Simulation environment

To evaluate the proposed optimization of MCS, we used custom simulation software which,

as ever, can be found at the Github repository for this thesis1. The software effectively

1https://github.com/mcsweeney90/thesis-code

https://github.com/mcsweeney90/thesis-code
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combines and extends the two packages that were used in Chapters 3 and 4, the former to

simulate the scheduling of task graphs (when costs have been scalarized) and the latter

for evaluating the makespan distributions of the resulting schedules. (Recall that we only

consider fullahead schedules here, so that computing the makespan distribution of a

given schedule with stochastic costs can easily be done by computing the longest path

distribution of the corresponding schedule graph, as described in Chapter 4.)

Unlike in previous chapters, we used only a single set of task graphs in our experiments.

These were based on the topologies of the 180 DAGs from the STG [128] benchmark with

n = 100. Note that all cost RVs need only be defined by their means and variances for

the scheduling methods that we evaluate here (with the partial exception of MCS; see

below). Therefore to generate costs for the task graphs we used the following procedure.

First, the expected values of all costs are fixed using the same extension of the correlation

noise-based (CNB) [32] method that was used for the STG set in Section 3.4.1. Then, for

each cost, we determine its variance by randomly sampling its coefficient of variation

from a gamma distribution with mean µv and standard deviation 0.1µv , where µv is a

parameter. As in [34], this is done to avoid bias by ensuring that the standard deviations

are not strictly proportional to the means.

Our preliminary testing suggested that there was little difference between the relative

performance of MC and UCB when different parameter choices were used in the CNB

method to set the cost means (although it may be useful in the future to investigate this

further). Therefore, to reduce the runtime, we used only the following set of parameters:

• q = 4 (recall that q is the number of processors);

• rtask = rmach = 0.5;

• V = vband = vccr = 0.5;

• µccr = 1.0.

These values were chosen randomly. The only parameter that we did vary was µv , for

which we considered values from the set {0.05,0.1,0.15,0.2,0.25,0.3,0.5}. For each choice

of µv and each DAG topology, we generated 10 sets of costs, so that there were effectively

180×7×10 = 12600 different graphs.
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5.3.2 Methodology

In order to determine which of the two scalarization methods is most effective, for each

DAG we did 100 iterations of both. This is a relatively small number compared to the values

used for examples in [148] but our exploratory testing with values up to 1000 indicated

that the same trends held true. For the MC scalarization method, the costs were sampled

from uniform distributions with the indicated means and variances; again, preliminary

testing suggested there was little difference in performance for other choices (e.g., normal

and gamma). For the UCB method, we sampled c uniformly at random from the interval

[0,3] for each of the 100 iterations and then used that value to scalarize the costs. In all

cases, we applied HEFT after the costs were scalarized in order to compute a schedule.

Although MCS uses a fitness check to avoid evaluating the makespan distribution of all

generated schedules, we did not use that here. Instead, we approximated the makespan

distribution of all generated schedules, for both scalarization schemes, using the MC

method with 1000 samples and uniform weights. Our investigation in the previous chapter

suggests that this is likely to give highly accurate estimates of the makespan distributions,

no matter which distributions the costs actually follow, assuming that the means and

variances of the cost RVs are fixed. To evaluate the convergence rate of the MC and UCB

scalarization methods, we selected the schedule produced by each which minimized the

makespan expected value and compared them. We also did likewise for the schedules

that maximized another quantity Ph which, for a given schedule π, is intended to roughly

approximate the probability that π will be shorter than the corresponding HEFT schedule

πh . This probability was estimated through the following procedure.

1. Compute the empirical makespan distribution of πh using the MC method (with

1000 samples and uniform weights).

2. Calculate the Mann-Whitney U statistic [82] of the empirical makespan distributions

for π and πh . (Intuitively, U is the number of makespan pairs—one from each

empirical distribution—for which π is shorter than πh .)

3. Divide U by 106 (the total number of pairs) to get Ph ≈P[|π| < |πh |
]
.

In principle Ph is a better measure of schedule quality than the expected value alone,

as it implicitly incorporates robustness as well. However, we should emphasize that the
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procedure used here only yields a crude estimate of the true probability that π will be

shorter than πh and therefore should be treated with a degree of caution.

5.4 SIMULATION RESULTS

Figure 5.1 compares the best schedule makespan expected values achieved by the MC and

UCB schedules after 100 iterations to the corresponding HEFT schedule makespan mean

for different values of µv (the mean coefficient of variation in the cost-setting algorithm).

We see that UCB is consistently superior to both MC and HEFT. Furthermore, after around

µv = 0.2 MC fails, on average, to obtain a schedule with a smaller expected makespan

than HEFT’s, whereas UCB continues to do so for greater values. These conclusions are

supported by Figure 5.2, which shows the mean Ph values achieved by MC and UCB.

Included also for comparison are the data for SHEFT [126] (see Section 5.2). Again, we see

that UCB is superior to MC for all values of µv . UCB is also consistently superior to SHEFT,

which is in turn likely to return a better schedule than HEFT (i.e., achieve a mean Ph > 0.5)

for all but µv = 0.5.

5.5 CONCLUSIONS AND FUTURE WORK

Our simulations suggest that the UCB scalarization method produces good schedules

more quickly than MC, especially when the variances of the costs are relatively high.

This indicates that UCB may be more effective than MC for producing schedules in the

MCS heuristic. We should, however, emphasize again the limitations of the experiments

described here, which were for a small set of randomly generated graphs. Extending this

investigation to a larger set of graphs, ideally including some from real applications, would

clearly be useful in future. Furthermore, it should also be noted that the results presented

were only for 100 iterations of each method. Again, small-scale testing indicated that the

same trends still held for larger values but this should be established more rigorously; it

could well be the case that the performance of UCB begins to stagnate for much greater

numbers of iterations.

It may also be worthwhile to investigate other methods of scalarizing the costs, al-

though we consider it unlikely that there is any scalarization function likely to lead to
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(a) µv = 0.05. (b) µv = 0.1.

(c) µv = 0.15. (d) µv = 0.2.

(e) µv = 0.25. (f ) µv = 0.3.

(g) µv = 0.5. (h) Full set.

Figure 5.1: Percentage reduction in expected value of schedule makespan achieved by the
best MC and UCB schedules after 100 iterations compared to the corresponding HEFT
schedule. Black horizontal lines indicate zero and are included as a visual aid to help
identify when scalarization methods improved on HEFT (i.e., above the line) and when
they were worse (below the line). Legends indicate the average percentage reduction in
the expected value.
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Figure 5.2: Mean Ph values obtained by MC, UCB and SHEFT schedules for different mean
coefficients of variation µv . Recall that Ph represents an estimate of the probability that
a given schedule will be shorter than HEFT’s, so that values below 0.5 indicate that the
schedule is likely to be worse.
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significant improvement. Indeed, we suspect that developing a new scheduling heuristic

that operates directly on the stochastic costs when computing a schedule, along the lines

of Rob-HEFT and SDLS, is likely to be a much more fruitful subject for future research. As

in previous chapters, an exhaustive empirical comparison of multiple task prioritization

schemes and processor selection rules would aid the development of such a heuristic.



CHAPTER 6

CONCLUSION

In this thesis we studied several problems related to scheduling in heterogeneous com-

puting. These problems were difficult and subtle. Optimal solutions were practically

unobtainable and heuristic algorithms the only realistic choice. We began in Chapter 2

by investigating how the priority-based heuristic framework could be optimized for com-

puting environments with only two different processor types. We proposed several new

alternatives for both phases of the framework and compared them experimentally with

existing methods, finding that, although there was no universally superior optimization,

many of the new methods were effective in certain situations. In Chapter 3 we extended

the horizon to generic heterogeneous computing and considered the problem of how

critical path estimates can be computed and used in scheduling heuristics. We reviewed

existing methods and proposed several new ones, including one approach based on a

stochastic interpretation of the problem which consistently bettered alternatives when

critical path estimates were used to prioritize tasks. In Chapter 4 we studied the problem

of predicting a schedule’s makespan when the values that the costs will take at runtime

are not known exactly. We analyzed empirical makespan distributions for a real applica-

tion and observed unexpected behavior that motivated our proposal of a new heuristic

framework for tackling the problem. Finally, in Chapter 5, we investigated how schedules

could be computed which are robust to uncertainty in their estimates, suggesting an

optimization of an existing iterative algorithm that appears to accelerate its convergence.

166
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6.1 FUTURE RESEARCH DIRECTIONS

Based on our experience conducting the research described in this thesis, we suggest

that the following may be promising avenues of future work in the area of heterogeneous

scheduling.

6.1.1 Hybrid scheduling

This thesis was wholly concerned with offline scheduling. Even in Chapters 4 and 5, where

we assumed that schedule costs were stochastic, the motivation was always that we either

are given, or wished to compute, a static schedule which is to be followed as closely as

possible at runtime. Intuitively, what we have called stochastic scheduling here can be

viewed as attempting to find the best possible schedule, assuming that the costs actually

follow the distributions that we expect at runtime. But in reality there is always the potential

that our expectations will be violated, whether this is due to modeling inaccuracies or any

number of outside factors, such as resource contention and failure. What, then, do we

do? Should we continue to follow the schedule we have, or do we need to reschedule and

modify it somehow?

An extended study focused on the general topic of if, and how, static schedules should

be modified as new information becomes available at runtime (sometimes called hybrid

scheduling [148]) would be of clear interest. It is well-known that, when deviations from

the cost estimates are not too extreme, good static schedules are typically superior to

online alternatives [2], [33], [107]. Therefore it is sensible to follow a computed static

schedule up to the point at which we detect that the estimates used are so inaccurate as to

make the schedule detrimental. Key to making this decision is the ability to quickly update

estimated schedule makespan distributions at runtime, as realizations of the costs become

apparent. This problem is closely related to the subject of Chapter 4 and, of course, the

most straightforward solution is to simply divide the schedule graph into two parts, a

“realized” part for which the costs have already been incurred and a “future” part for which

the costs have not. Any of the standard stochastic longest path heuristics can then be

used to evaluate the longest path distribution of the future subgraph—i.e., the expected

time remaining if we continue to follow the schedule. The issue with this approach is that

it may be expensive, especially if we wish to do it often. An efficient means of updating
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the estimated schedule makespan without the cost associated with working through the

graph would therefore be useful.

More broadly, it would be helpful to establish, through a combination of theoretical

analysis and simulated experiments, how we should act if we do decide to deviate from a

given static schedule. One extreme here would be to disregard the schedule altogether

and employ an online (e.g., greedy) heuristic for the remaining tasks, however it could well

be that superior performance can be achieved by only deviating from the static schedule

in a few specific ways. Of course, there will be no one-size-fits-all answer to such a general

problem, but it would be useful to determine guidelines for different circumstances (e.g.,

varying levels of uncertainty about future cost estimates) in order to help make this

decision.

6.1.2 Reinforcement learning

Many of the scheduling heuristics discussed in this thesis utilize dynamic programming

(DP) at some point; in HEFT, for example, computing task priorities is done in a classic

DP manner. DP is closely related to reinforcement learning (RL), a kind of machine learn-

ing that has achieved many prominent successes in recent years and therefore become

popular for tackling difficult scheduling problems. With this in mind, it may be helpful to

consider if RL—and indeed machine learning more broadly—can be successfully applied

in this context.

Overview. Reinforcement learning can be considered either as a specific form of su-

pervised learning or as a distinct type of learning in its own right [123]. The key idea

is learning through interaction. The framework for a reinforcement learning problem

is as follows: an agent interacts with an environment whose dynamics are not entirely

known. The agent observes the state of the environment and then takes some action

based on this information for which it receives feedback in the form of some scalar cost.

The goal of the agent is to minimize the total cost that the agent incurs over all time.

(Note that the aim of reinforcement learning is often framed in terms of maximizing some

reward rather than minimizing costs, but the two are equivalent.) A wide variety of RL

algorithms have been proposed such as REINFORCE [139], Monte Carlo Tree Search [41],
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Sarsa [105] and Q-learning [137], [138] but they all essentially aim to help the agent make

this minimization.

RL and scheduling. Reinforcement learning as a concept has been around for decades

but was traditionally impractical for interesting problems because it was unable to deal

with the large number of possible states and actions that these problems usually possess,

called the curse of dimensionality [22]. However advances in recent years, particularly

in the area of deep reinforcement learning—when deep neural networks are used for

function approximation—suggest that this may no longer be the case. In particular, the

successes achieved by Google’s DeepMind in training deep RL agents to play Atari games

at superhuman levels of performance [90] and defeat the best human players at the board

game Go [118], [119] clearly show that reinforcement learning is now a viable method for

dealing with complex problems. Due at least in part to these achievements, reinforcement

learning has enjoyed a recent surge in popularity and has been applied to a wide range

of problems in many different areas. Scheduling is no exception: RL solutions were

considered at least as far back as Zhang and Dietterich [146] but interest has increased

sharply in the last few years.

Mao et al. designed DeepRM, a deep reinforcement learning agent intended to handle

general dynamic resource management problems in computer systems and networks

[83]. Using a variant of the REINFORCE algorithm, they trained a deep neural network to

balance multiple different objectives (such as minimizing total job execution time and

reducing processor idle times). Simulations suggested that their agent performed well

compared to state-of-the-art approaches. A notable limitation of their work is that they did

not consider jobs with intra-task dependencies (such as those which can be represented

by task graphs). Modifications to the DeepRM agent and its extension to static problems

were later investigated by Ye et al. [144].

The use of Q-learning for dynamic load balancing in distributed heterogeneous sys-

tems was investigated by Parent et al. [97], and later Samreen and Kumar [110], and Tong

et al. [130]. Li et al. [74] used artificial neural networks to estimate task execution times

in their extension of the classic Modified Critical Path (MCP) scheduling heuristic [140].

Training neural networks to predict thread performance on the diverse processing cores of

a heterogeneous system in order to maximize total throughput was also considered in the
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more recent work of Nemirovsky et al. [92]. Ipek et al. proposed a reinforcement learning

based memory controller for multicore processors [63]. Simulations suggested that it was

capable of outperforming the existing approaches at that time but the RL-based controller

was never actually implemented on an physical chip because of the prohibitive cost of

constructing such hardware.

Possible applications. From a scheduling perspective, the most straightforward use

of RL would simply be as a means of constructing a near-optimal schedule. By suitably

defining the problem in the classic RL framework, it should be possible to train an RL agent

for computing a good schedule, however we choose to define good. This is likely to be

expensive, so RL would fill a similar niche to evolutionary algorithms or other approaches

that are used when very high-quality schedules are required. More speculatively, and tying

into the previous future research topic, it would be interesting to establish if RL could be

used to train a scheduling agent how to act at runtime in response to delays or resource

failures.
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