

An efficient new static scheduling heuristic for accelerated architectures

Tom McSweeney Alan Turing Building, 2.111 thomas.mcsweeney@postgrad.manchester.ac.uk

NLA Group meeting November 28, 2019

2 Scheduling heuristics

4 Results

Rise of the GPU

Using Graphics Processing Units (GPUs) for general computations—in addition to multicore CPUs—is increasingly common in high-performance computing (HPC).

GPUs are particularly effective for **numerical linear algebra** applications, such as **matrix multiplication**.

Summit

World's fastest supercomputer*, it has 4,608 nodes each with:

- 2 Power9 22-core CPUs,
- 6 NVIDIA Tesla V100 GPUs.

How do we take advantage?

Only interested in directed graphs without cycles—DAGs.

Example: Cholesky factorization

$$A = \begin{bmatrix} A_{00} & \dots & A_{N0} \\ \vdots & \ddots & \vdots \\ A_{N0} & \dots & A_{NN} \end{bmatrix}$$

Implementation

For k = 0, 1, ..., N: $A_{kk} = \text{POTRF}(A_{kk})$ For m = k + 1, ..., N - 1: $A_{mk} = \text{TRSM}(A_{kk}, A_{mk})$ For n = k + 1, ..., N - 1: $A_{nn} = \text{SYRK}(A_{nk}, A_{nn})$ For m = n + 1, ..., N - 1: $A_{mn} = \text{GEMM}(A_{mk}, A_{nk}, A_{mn})$

The task scheduling problem

We want to find the optimal **schedule** that tells us which tasks will be done by each processor, in what order, and (ideally) at what time, so the **makespan** is minimized.

Unfortunately this is an NP-complete problem \implies (probably) can't find a truly optimal schedule.

Note

In practice, scheduling is normally handled by a **runtime system**. Examples include:

- StarPU [Augonnet et al., Inria, 2010-],
- PaRSEC [Bosilca et al., ICL, 2013-],
- **OmpSs** [Duran et al., Barcelona, 2011–].

Static and dynamic scheduling

Computation and communication times are **never** known precisely before the DAG is actually executed.

Static scheduling.

Compute schedule before runtime based on best estimates available, or probability distributions of timings.

Dynamic scheduling.

Determine schedule at runtime using the latest data.

Conventional wisdom

Static scheduling better when estimates are good but otherwise use dynamic.

Static scheduling for multicore and GPU?

- Static schedules can be **robust** in practice. In addition, using static schedule as a **guide** better than wholly dynamic [Agullo et al., 2016].
- Can use timing distribution information to make schedule even more robust [Zheng and Sakellariou, 2013].

The plan

- Find a good static schedule quickly for a given DAG and CPU-GPU target platform.
- If necessary, use static schedule as a basis for better dynamic schedule at runtime, or do some post-processing using distribution information to make it more robust.

This talk is focused only on the first part.

Model and assumptions

We have a DAG *G* consisting of *n* tasks and *e* edges and a target platform with *P* processors, P_C CPUs and $P - P_C = P_G$ GPUs. – View CPU cores individually but GPUs as discrete.

Assume that:

- **1** All tasks t_1, \ldots, t_n are **atomic**.
- 2 All processors can only execute a single task at once.
- 3 All processors can do all tasks, but with different times.
 - Task t_i has CPU time $w_C(t_i)$ and GPU time $w_G(t_i)$.
 - Task t_i takes time w_{im} on processor p_m .

Model and assumptions II

Communication time between tasks t_i and t_j is time between when t_i is completed and execution of t_j can begin, including all relevant **latency** and **data transfer** times.

- Function $c_{ij}(p_m, p_n)$ of processors.

Assume only five possible communication costs:

- 0, from processor to itself;
- $c_{ij}(C, C)$, from CPU to another CPU;
- $c_{ij}(C, G)$, from CPU to GPU;
- $c_{ij}(P, C)$, from GPU to CPU;
- $c_{ij}(G, G)$, from GPU to another GPU.

(Usually also assume $c_{ij}(C, C) \equiv 0$ and other costs are identical to each other, $c_{ij}(C, G) = c_{ij}(P, C) = c_{ij}(G, G)$, for results, but this depends on memory architecture of target platform!)

Simulation model

Impractical to use real machines for testing, so we use a **simulation model** which implements the mathematical model.

This allows users to simulate the scheduling of **arbitrary** DAGs on **arbitrary** multicore CPU-GPU platforms.

Written in Python and available at my Github (mcsweeney90).

```
1 class Task:
2 def __init__(self, task_type=None):
3 self.type = task_type
4 self.ID = None
5 self.entry = False
6 self.exit = False
7 ...
```

Calibrating the simulator

As a guide, we used a single node of the UoM CSF3 with four Xeon Gold 6130 CPUs @ 2.10GHz and four Nvidia V100-SXM2-16GB (Volta) GPUs.

BLAS kernels (MKL/cuBLAS) were used for benchmarking.

Table: Mean CPU time / mean GPU time (1000 runs).

Tile size	DGEMM	DPOTRF	DSYRK	DTRSM
64	2.5	0.6	0.8	1.0
128	8.0	1.7	2.3	1.7
256	35.0	1.7	8.6	4.2
512	64.6	5.0	27.3	12.8
1024	92.7	13.7	55.8	24.2

2 Scheduling heuristics

HEFT

The most popular approaches to scheduling in heterogeneous environments are **heuristics**: methods that do well in practice but offer no performance guarantees.

The most prominent is probably Heterogeneous Earliest Finish Time (HEFT) [Topcuoglu, Hariri and Wu, 2002]. As a listing heuristic, it consists of two phases:

1 Task prioritization.

Determine the order tasks are to be scheduled.

2 Processor selection.

Assign tasks to the processors.

Note

HEFT was intended for **clusters** with **diversely heterogeneous** nodes, not just CPU and GPU!

Task prioritization I

Define the **average computation cost** $\overline{w_i}$ of all tasks t_i over all processors

$$\overline{w_i} \coloneqq \sum_{m=1}^{P} \frac{w_{im}}{P} = \frac{w_C(t_i)P_C + w_G(t_i)P_G}{P}.$$
 (1)

The average communication cost $\overline{c_{ij}}$ between t_i and t_j is the average over all combinations,

$$\overline{c_{ij}} \coloneqq \frac{1}{P^2} \sum_{m,n} c_{ij}(p_m, p_n) = \frac{1}{P^2} \sum_{k,\ell \in \{C,G\}} A_{k\ell} c_{ij}(k,\ell), \quad (2)$$

where $A_{CC} = P_C(P_C - 1)$, $A_{CG} = P_C P_G = A_{GC}$, and $A_{GG} = P_G(P_G - 1)$.

Task prioritization II

Let:

- $C(t_i)$ be the **children** of task t_i ,
- $P(t_i)$ be the **parents** of task t_i .

For all tasks, compute the **upward rank** r_u recursively, starting from the **exit** task, by

$$r_u(t_i) = \overline{w_i} + \max_{t_j \in C(t_i)} (\overline{c_{ij}} + r_u(t_j)).$$
(3)

This ensures precedence constraints are met!

Finally, make a scheduling list of all tasks in **decreasing** order of upward rank.

Processor selection

Let:

- F_{m_i} be the earliest time p_m is free to do task t_i ,
- $AFT(t_k)$ be the **actual** finish time of t_k .

Note F_{m_i} may **not** be the latest finish time of all tasks on p_m !

Then the **earliest start time** of t_i on p_m is

$$\textit{EST}(t_i, p_m) = \max\left\{ \textit{F}_{m_i}, \max_{t_k \in P(t_i)} (\textit{AFT}(t_k) + c_{ki}(p_k, p_m))
ight\}$$

and the **earliest finish time** of t_i on p_m is

$$EFT(t_i, p_m) = w_{im} + EST(t_i, p_m).$$
(4)

HEFT algorithm

- **1** Set the computation cost of all tasks using (1)
- 2 Set the communication cost of all edges using (2)
- **3** Moving up the DAG, compute r_u for all tasks using (3)
- 4 Sort tasks into list by decreasing r_u
- **5** For each task t_i in list:

For each processor p_k : Compute $EFT(t_i, p_k)$ using (4) Schedule t_i on $p_m := \arg \min_p EFT(t_i, p)$

HEFT has time complexity $O(e \cdot P)$. Usually $e \propto n^2$ so the complexity is $O(n^2 P)$.

Benchmarking—Cholesky, tile size 128

Benchmarking—Cholesky, tile size 1024

NUMBER OF TASKS

Benchmarking—Random, low acceleration

COMPUTATION-TO-COMMUNICATION RATIO

Benchmarking—Random, high acceleration

Possible optimization

Idea

Weight mean values by relative processor power.

Define acceleration ratio r_i as CPU time/GPU time.

Use

$$\overline{w_i} = \frac{w_C(t_i)P_C + r_iw_G(t_i)P_G}{P_C + r_iP_G}$$

instead of (1) and

$$\overline{c_{ij}} = \frac{A_{CC} \cdot c_{ij}(C, C) + A_{CG} (r_i c_{ij}(G, C) + r_j c_{ij}(C, G)) + r_i r_j A_{GG} \cdot c_{ij}(G, G)}{(r_i P_G + P_C) \cdot (r_j P_G + P_C)}$$

instead of (2).

We call this **HEFT-WM**.

2 Scheduling heuristics

4 Results

HOFT

We propose a new heuristic which exploits platforms with only CPUs and GPUs called Heterogeneous Optimistic Finish Time (HOFT).

Key idea is to compute a **table** of **optimistic** times that all tasks can be completed on both processor types. For $p \in \{C, G\}$, move **forward** through the DAG and **recursively** compute

$$OFT(t_i, p) = w_p(t_i) + \max_{t_j \in P(t_i)} \left\{ \min_{p'} \{ OFT(t_j, p') + \delta_{pp'} c_{ij}(p, p') \} \right\}.$$
(5)

This table is the basis for new task prioritization and processor selection phases.

Task prioritization

Define weights of all tasks to be the **ratio** of the maximum and minimum OFT values,

$$\overline{w_i} = \frac{\max\{OFT(t_i, C), OFT(t_i, G)\}}{\min\{OFT(t_i, C), OFT(t_i, G)\}},$$
(6)

and assume all edge weights are zero, $\overline{c_{ij}} \equiv 0$.

Compute the upward rank of all tasks with these values to ensure precedence constraints are met.

Intuition

High ratio means task has a strong **preference** for one resource type and these should be scheduled first. OFT uses more info from the DAG than e.g., acceleration ratio.

Processor selection I

Let $T_k \in \{C, G\}$ be the type of processor p_k .

If $p_m := \arg \min_p EFT(t_i, p)$ and T_m is the **fastest** processor type for t_i , schedule it on p_m .

If not, let p_f be the specific processor of fastest type with minimal EFT. Compute

$$s_m \coloneqq EFT(t_i, p_f) - EFT(t_i, p_m). \tag{7}$$

Assume that all children of t_i will be scheduled on processor of type that minimizes their OFT. Compute

$$E(C(t_i)|p_m) \coloneqq \max_{t_j \in C(t_i)} \Big(EFT(t_i, p_m) + c_{ij}(T_m, T_j) + w_{T_j}(t_j) \Big).$$
(8)

Processor selection II

Likewise for p_f compute $E(C(t_i)|p_f)$.

lf

$$s_m > E(C(t_i)|p_m) - E(C(t_i)|p_f)$$
(9)

schedule task t_i on p_m . Else, schedule it on p_f .

Intuition

Choose processor with smallest EFT as in HEFT unless we **expect** to increase the earliest possible time all children can be completed by doing so.

HOFT algorithm

- Compute the OFT table using (5)
- 2 Set the computation cost of all tasks using (6)
- 3 Set the communication cost of all edges to 0
- 4 Moving up the DAG, compute r_u for all tasks using (3)
- 5 Sort tasks into list by decreasing r_u

```
For each task t_i in list:
6
       p_m \coloneqq \arg \min_k EFT(t_i, p_k)
       p_f := \arg\min_k (EFT(t_i, p_k) | w_{ik} = \min(w_C(t_i), w_G(t_i)))
       If p_m = p_f:
         Schedule t_i on p_m
       Flse:
         Compute s_m using (7)
         Compute E(C(t_i)|p_m) and E(C(t_i)|p_f) using (8)
         If (9) holds:
            Schedule t_i on p_m
         Flse:
            Schedule t_i on p_f
```


2 Scheduling heuristics

3 HOFT

4 Results

Cholesky-tile size 128

Cholesky-tile size 1024

NUMBER OF TASKS

Random DAGs—1002 tasks

Table: Average makespan reduction (%) vs. HEFT.

	1 GPU, 1 CPU		4 GPUs, 4 CPUs		
Heuristic	Low acc.	High acc.		Low acc.	High acc.
HEFT-WM	0.8	2.3		1.6	2.4
HOFT	-0.2	3.8		1.4	2.3
HOFT-WM	0.8	4.6		1.4	3.7

Conclusions

Summary of results

- HOFT often superior and always competitive.
- HEFT-WM almost always an **improvement**.
- HOFT processor selection more effective in general.

Our two main contributions are:

- A new static scheduling heuristic optimized specifically for accelerated architectures.
- Open-source simulation software that allows the evaluation of scheduling methods for user-defined CPU-GPU platforms in a fast and reproducible manner.

Future work

- Alternative heuristics for DAGs with low CCR.
 - Duplication?
 - Aggregation?
- Consider a wider range of architectures and applications.
- How do we construct good task DAGs for a given application?
- Most importantly, new methods for adapting static schedules to real environments!
 - How to improve robustness cheaply?
 - Reinforcement learning?