
\

An efficient new static scheduling
heuristic for accelerated architectures

Tom McSweeney
Alan Turing Building, 2.111

thomas.mcsweeney@postgrad.manchester.ac.uk

NLA Group meeting
November 28, 2019

http://www.manchester.ac.uk
http://www.mims.manchester.ac.uk/research/numerical-analysis
https://mcsweeney90.github.io/
mailto:thomas.mcsweeney@postgrad.manchester.ac.uk

1 Background

2 Scheduling heuristics

3 HOFT

4 Results

Rise of the GPU

Using Graphics Processing Units (GPUs) for general
computations—in addition to multicore CPUs—is increasingly
common in high-performance computing (HPC).

GPUs are particularly effective for numerical linear algebra
applications, such as matrix multiplication.

1

Summit

World’s fastest supercomputer*, it has 4,608 nodes each with:
• 2 Power9 22-core CPUs,
• 6 NVIDIA Tesla V100 GPUs.

2

How do we take advantage?

Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Task-based programming
Divide application up into a set of tasks. Do the GPU-
friendly ones on GPU and the CPU-friendly ones on CPU.
But what about the precedence constraints?

3

From tasks to DAGs

Problem
Compute z = ‖y‖2

2 for

y =
[
x + 1
x − 1

]

and
x = 2 + 2.

Only interested in directed
graphs without cycles—DAGs.

4

Example: Cholesky factorization

A =

A00 . . . AN0
...

AN0 . . . ANN

.

Implementation
For k = 0, 1, . . . , N:

Akk = POTRF(Akk)

For m = k + 1, . . . , N − 1:

Amk = TRSM(Akk , Amk)

For n = k + 1, . . . , N − 1:

Ann = SYRK(Ank , Ann)

For m = n + 1, . . . , N − 1:

Amn = GEMM(Amk , Ank , Amn)

5

The task scheduling problem

We want to find the optimal schedule that tells us which tasks
will be done by each processor, in what order, and (ideally) at
what time, so the makespan is minimized.

Unfortunately this is an NP-complete problem
=⇒ (probably) can’t find a truly optimal schedule.

Note
In practice, scheduling is normally handled by a runtime
system. Examples include:
− StarPU [Augonnet et al., Inria, 2010–],
− PaRSEC [Bosilca et al., ICL, 2013–],
− OmpSs [Duran et al., Barcelona, 2011–].

6

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
https://ieeexplore.ieee.org/document/6654146
https://www.worldscientific.com/doi/abs/10.1142/S0129626411000151

Static and dynamic scheduling

Computation and communication times are never known
precisely before the DAG is actually executed.

• Static scheduling.
Compute schedule before runtime based on best estimates
available, or probability distributions of timings.

• Dynamic scheduling.
Determine schedule at runtime using the latest data.

Conventional wisdom
Static scheduling better when estimates are good but oth-
erwise use dynamic.

7

Static scheduling for multicore and GPU?

• Static schedules can be robust in practice. In addition,
using static schedule as a guide better than wholly dynamic
[Agullo et al., 2016].

• Can use timing distribution information to make schedule
even more robust [Zheng and Sakellariou, 2013].

8

https://ieeexplore.ieee.org/document/7516099
https://www.sciencedirect.com/science/article/abs/pii/S0743731513001573?via%3Dihub

The plan

1 Find a good static schedule quickly for a given DAG and
CPU-GPU target platform.

2 If necessary, use static schedule as a basis for better
dynamic schedule at runtime, or do some post-processing
using distribution information to make it more robust.

This talk is focused only on the first part.

9

Model and assumptions

We have a DAG G consisting of n tasks and e edges and a target
platform with P processors, PC CPUs and P − PC = PG GPUs.
− View CPU cores individually but GPUs as discrete.

Assume that:
1 All tasks t1, . . . , tn are atomic.

2 All processors can only execute a single task at once.

3 All processors can do all tasks, but with different times.
− Task ti has CPU time wC(ti) and GPU time wG(ti).
− Task ti takes time wim on processor pm.

10

Model and assumptions II

Communication time between tasks ti and tj is time between
when ti is completed and execution of tj can begin, including all
relevant latency and data transfer times.
− Function cij(pm, pn) of processors.
Assume only five possible communication costs:
• 0, from processor to itself;
• cij(C ,C), from CPU to another CPU;
• cij(C ,G), from CPU to GPU;
• cij(P,C), from GPU to CPU;
• cij(G ,G), from GPU to another GPU.

(Usually also assume cij(C ,C) ≡ 0 and other costs are identical
to each other, cij(C ,G) = cij(P,C) = cij(G ,G), for results, but
this depends on memory architecture of target platform!)

11

Simulation model

Impractical to use real machines for testing, so we use a
simulation model which implements the mathematical model.

This allows users to simulate the scheduling of arbitrary DAGs
on arbitrary multicore CPU-GPU platforms.

Written in Python and available at my Github (mcsweeney90).

1 class Task:
2 def __init__(self, task_type=None):
3 self.type = task_type
4 self.ID = None
5 self.entry = False
6 self.exit = False
7 ...

12

https://github.com/mcsweeney90/heterogeneous_optimistic_finish_time

Calibrating the simulator

As a guide, we used a single node of the UoM CSF3 with four
Xeon Gold 6130 CPUs @ 2.10GHz and four Nvidia
V100-SXM2-16GB (Volta) GPUs.

BLAS kernels (MKL/cuBLAS) were used for benchmarking.

Table: Mean CPU time / mean GPU time (1000 runs).

Tile size DGEMM DPOTRF DSYRK DTRSM
64 2.5 0.6 0.8 1.0
128 8.0 1.7 2.3 1.7
256 35.0 1.7 8.6 4.2
512 64.6 5.0 27.3 12.8
1024 92.7 13.7 55.8 24.2

13

1 Background

2 Scheduling heuristics

3 HOFT

4 Results

HEFT

The most popular approaches to scheduling in heterogeneous
environments are heuristics: methods that do well in practice
but offer no performance guarantees.

The most prominent is probably Heterogeneous Earliest
Finish Time (HEFT) [Topcuoglu, Hariri and Wu, 2002]. As a
listing heuristic, it consists of two phases:

1 Task prioritization.
Determine the order tasks are to be scheduled.

2 Processor selection.
Assign tasks to the processors.

Note
HEFT was intended for clusters with diversely hetero-
geneous nodes, not just CPU and GPU!

14

https://ieeexplore.ieee.org/document/993206

Task prioritization I

Define the average computation cost wi of all tasks ti over
all processors

wi :=
P∑

m=1

wim

P = wC(ti)PC + wG(ti)PG

P . (1)

The average communication cost cij between ti and tj is the
average over all combinations,

cij := 1
P2

∑
m,n

cij(pm, pn) = 1
P2

∑
k,`∈{C ,G}

Ak`cij(k , `), (2)

where ACC = PC(PC − 1), ACG = PCPG = AGC , and
AGG = PG(PG − 1).

15

Task prioritization II

Let:
• C(ti) be the children of task ti ,
• P(ti) be the parents of task ti .

For all tasks, compute the upward rank ru recursively, starting
from the exit task, by

ru(ti) = wi + max
tj∈C(ti)

(cij + ru(tj)). (3)

This ensures precedence constraints are met!

Finally, make a scheduling list of all tasks in decreasing order of
upward rank.

16

Processor selection

Let:
• Fmi be the earliest time pm is free to do task ti ,
• AFT (tk) be the actual finish time of tk .

Note Fmi may not be the latest finish time of all tasks on pm!

Then the earliest start time of ti on pm is

EST (ti , pm) = max
{

Fmi , max
tk∈P(ti)

(AFT (tk) + cki(pk , pm))
}

and the earliest finish time of ti on pm is

EFT (ti , pm) = wim + EST (ti , pm). (4)

17

HEFT algorithm

1 Set the computation cost of all tasks using (1)
2 Set the communication cost of all edges using (2)
3 Moving up the DAG, compute ru for all tasks using (3)
4 Sort tasks into list by decreasing ru

5 For each task ti in list:
For each processor pk :

Compute EFT (ti , pk) using (4)
Schedule ti on pm := arg minp EFT (ti , p)

HEFT has time complexity O(e · P). Usually e ∝ n2 so the
complexity is O(n2P).

18

Benchmarking—Cholesky, tile size 128

19

Benchmarking—Cholesky, tile size 1024

20

Benchmarking—Random, low acceleration

21

Benchmarking—Random, high acceleration

22

Possible optimization

Idea
Weight mean values by relative processor power.

Define acceleration ratio ri as CPU time/GPU time.

Use
wi = wC(ti)PC + riwG(ti)PG

PC + riPG

instead of (1) and

cij =
ACC · cij (C , C) + ACG

(
ri cij (G, C) + rj cij (C , G)

)
+ ri rj AGG · cij (G, G)

(ri PG + PC) · (rj PG + PC)

instead of (2).

We call this HEFT-WM.
23

1 Background

2 Scheduling heuristics

3 HOFT

4 Results

HOFT

We propose a new heuristic which exploits platforms with only
CPUs and GPUs called Heterogeneous Optimistic Finish
Time (HOFT).

Key idea is to compute a table of optimistic times that all tasks
can be completed on both processor types. For p ∈ {C ,G},
move forward through the DAG and recursively compute

OFT (ti , p) = wp(ti) + max
tj∈P(ti)

{
min

p′
{OFT (tj , p′) + δpp′cij(p, p′)}

}
.

(5)

This table is the basis for new task prioritization and processor
selection phases.

24

Task prioritization

Define weights of all tasks to be the ratio of the maximum and
minimum OFT values,

wi = max{OFT (ti ,C),OFT (ti ,G)}
min{OFT (ti ,C),OFT (ti ,G)} , (6)

and assume all edge weights are zero, cij ≡ 0.

Compute the upward rank of all tasks with these values to
ensure precedence constraints are met.

Intuition
High ratio means task has a strong preference for one
resource type and these should be scheduled first. OFT
uses more info from the DAG than e.g., acceleration ratio.

25

Processor selection I

Let Tk ∈ {C ,G} be the type of processor pk .

If pm := arg minp EFT (ti , p) and Tm is the fastest processor
type for ti , schedule it on pm.

If not, let pf be the specific processor of fastest type with
minimal EFT. Compute

sm := EFT (ti , pf)− EFT (ti , pm). (7)

Assume that all children of ti will be scheduled on processor of
type that minimizes their OFT. Compute

E (C(ti)|pm) := max
tj∈C(ti)

(
EFT (ti , pm) + cij(Tm,Tj) + wTj (tj)

)
.

(8)

26

Processor selection II

Likewise for pf compute E (C(ti)|pf).

If

sm > E (C(ti)|pm)− E (C(ti)|pf) (9)

schedule task ti on pm. Else, schedule it on pf .

Intuition
Choose processor with smallest EFT as in HEFT unless we
expect to increase the earliest possible time all children
can be completed by doing so.

27

HOFT algorithm
1 Compute the OFT table using (5)
2 Set the computation cost of all tasks using (6)
3 Set the communication cost of all edges to 0
4 Moving up the DAG, compute ru for all tasks using (3)
5 Sort tasks into list by decreasing ru

6 For each task ti in list:
pm := arg mink EFT (ti , pk)
pf := arg mink

(
EFT (ti , pk)|wik = min(wC (ti), wG(ti))

)
If pm = pf :

Schedule ti on pm
Else:

Compute sm using (7)
Compute E (C(ti)|pm) and E (C(ti)|pf) using (8)
If (9) holds:

Schedule ti on pm
Else:

Schedule ti on pf
28

1 Background

2 Scheduling heuristics

3 HOFT

4 Results

Cholesky—tile size 128

29

Cholesky—tile size 1024

30

Random DAGs—1002 tasks

Table: Average makespan reduction (%) vs. HEFT.

1 GPU, 1 CPU 4 GPUs, 4 CPUs
Heuristic Low acc. High acc. Low acc. High acc.

HEFT-WM 0.8 2.3 1.6 2.4
HOFT −0.2 3.8 1.4 2.3

HOFT-WM 0.8 4.6 1.4 3.7

31

Conclusions

Summary of results
− HOFT often superior and always competitive.
− HEFT-WM almost always an improvement.
− HOFT processor selection more effective in general.

Our two main contributions are:
1 A new static scheduling heuristic optimized specifically for

accelerated architectures.
2 Open-source simulation software that allows the evaluation

of scheduling methods for user-defined CPU-GPU platforms
in a fast and reproducible manner.

32

Future work

• Alternative heuristics for DAGs with low CCR.
− Duplication?
− Aggregation?

• Consider a wider range of architectures and applications.

• How do we construct good task DAGs for a given
application?

• Most importantly, new methods for adapting static
schedules to real environments!
− How to improve robustness cheaply?
− Reinforcement learning?

33

	Background
	Scheduling heuristics
	HOFT
	Results

